∴ DE∥BC,DE= 1 BC. 2
归纳总结
三角形中位线定理 三角形的中位线平行于三角形的第三边,并且等于第三边的一半.
几何语言: 在△ABC中
∵点D,E分别为AB,AC的中点,
∴DE 1BC
D
2
A E
B
C
对应训练
1. 如图, D, E, F分别是△ABC各边的中点, 且AB=11c
m, BC=8cm, AC=6cm, 则DE= 3 cm, DF= 4 cm, EF= 5.5 cm, △DEF的周长是 12.5 cm.
求证:四边形DEFB是平行四边形.
A
证明:∵D,E分别是AC,AB的中点,
∴DE是△ABC的中位线.
D
E
∴DE∥BC,BC=2DE.
∵CF=3BF, ∴BC=2BF. ∴DE=BF. C
BF
又DE∥BF, ∴四边形DEFB是平行四边形.
对应训练
1. 如图, 在△ABC中, D, E, F分别是, AB, BC, CA 的
中点.以这些点为顶点,在图中,你能画出多少个平行
四边形?为什么?【选自教材P49,练习第1题】
解:能在图中画出3个平行四边形. 如图,连接DE,EF,FD,
A
D
F
则▱BEFD,▱DECF,▱DEFA即为所 B 画的3个平行四边形.
E
C
对应训练
【选自教材P49,练习第3题】
2.如图,A, B两点被池塘隔开,在 A, ቤተ መጻሕፍቲ ባይዱ外选一点C,连接
D
A
C
E
B
方法2:可分别延长AC和BC到D, E, 使 DC=BC ,
EC=AC, 连接DE, 量出DE的距离,即得AB的距离,