第1课时 数轴
- 格式:ppt
- 大小:5.05 MB
- 文档页数:7
数轴教学设计教学目标:知识与技能:知道数轴的三要素,会画数轴;知道有理数与数轴上点的对应关系,能将有理数用数轴上的点表示;会利用数轴比较有理数的大小。
过程与方法:经历数轴形成的过程,初步体会数形结合的思想方法;能初步运用数轴得到有关知识解决一些实际问题,增强数学应用意识,发展实践能力和创新精神。
情感、态度与价值观:初步认识数学与人类生活的密切联系,体验数学活动充满着探索和创造,感受数学的严谨性。
教学重点数轴的画法;会用数轴上的点表示有理数,能说出数轴上已知点所表示的数。
教学难点会用数轴上的点表示有理数,能说出数轴上已知点所表示的数。
教学用具投影仪。
教学设计思路本节课以实例引出了数轴的概念,并通过具体的实例帮助学生更好的理解数轴的意义,并认识到数学与生活的紧密联系,体会数轴的用途。
课堂中的设置小组讨论让每位同学都积极思考、踊跃发言,最后通过练习掌握数轴的有关知识。
课堂教学过程设计1课时(一)导入我们一起来观察一下直尺,直尺上哪边的数的大,哪边的数小?这是我们已经学过的用直线上依次排列的点来表示自然数,这样可以直观地反映自然数的大小。
那么有理数可以用直线上的点来表示吗?大家思考一下。
(二)一起探究看书中的问题,投影显示如下图:西 东1、画一条直线表示马路,从左到右表示从西到东的方向,在直线上任取一个点O 表示汽车站的位置,规定1个单位长度(线段OA 的长)代表1m 长。
让学生找出柳树、杨树、槐树、电线杆的位置。
学生思考,踊跃发言,说出自己的观点。
现在我们将实际的地点抛开不考虑,只保留这条水平的直线,并且在这条直线上任取一点为原点,用这个点表示0,规定这条直线上从原点向右的方向为正方向,用箭头表示,那么相反的方向为负方向,选取某一长度作为单位长度,就得到了数轴(number axis )。
(三)数轴1.数轴的画法 第一步:画直线定原点原点表示0。
第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。
初中数轴教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。
2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
3. 在数与形结合的过程中,体会数学学习的乐趣。
教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。
2. 数形结合的思想方法。
教学准备:1. 教师准备数轴的图片或实物模型。
2. 学生准备笔记本和笔。
教学过程:一、引入新课1. 教师通过展示温度计的图片,引导学生思考温度计上数字的意义。
2. 提出问题:在数学中,有没有像温度计一样可以用来表示数的轴呢?二、探索新知1. 教师引导学生小组讨论,用画图的形式表示东西向马路上杨树、柳树、汽车站牌三者之间的关系。
2. 学生画图表示后,教师提问:如何用数表示这些树、电线杆与汽车站牌的相对位置呢?3. 教师引导学生思考数的符号的实际意义,对照体温计进行解答。
4. 教师给出数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
三、教学数轴的三要素1. 教师引导学生观察数轴的图片,找出数轴的三要素:原点、正方向、单位长度。
2. 学生通过数轴的图片或实物模型,体会数轴的三要素。
四、用数轴表示有理数1. 教师引导学生理解数轴上的点与有理数的对应关系。
2. 学生通过数轴上的点,练习用数轴表示有理数。
五、数形结合的思想1. 教师引导学生观察数轴上的点与有理数的关系,体会数形结合的思想。
2. 学生通过实际操作,理解数形结合的思想。
六、总结与拓展1. 教师引导学生总结数轴的概念和数形结合的思想。
2. 学生通过数轴的图片或实物模型,进行拓展练习。
教学评价:1. 学生能准确地用数轴表示有理数。
2. 学生能理解数形结合的思想,并能在实际问题中运用。
教学反思:本节课通过引入温度计的例子,引导学生思考数轴的概念,激发学生的兴趣。
通过小组讨论和实际操作,学生能理解数轴的三要素和用数轴表示有理数的方法。
在教学过程中,注重培养学生的观察能力和思维能力,引导学生体会数形结合的思想。
初中数学数轴教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。
2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
3. 在数与形结合的过程中,体会数学学习的乐趣。
教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。
2. 数形结合的思想方法。
教学准备:1. 数轴图示2. 教学卡片教学过程:一、引入新课1. 利用温度计的实例,引导学生思考数学中是否有类似的表示数的工具。
2. 引导学生思考如何用数表示东西向马路上杨树、柳树、汽车站牌的相对位置。
二、探索新知1. 教师引导学生小组讨论,用画图的形式表示东西向马路上杨树、柳树、汽车站牌三者之间的关系。
2. 教师提问:如何用数表示这些树、电线杆与汽车站牌的相对位置?3. 教师引导学生思考0的意义,以及数的符号的实际意义。
4. 教师给出数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素是原点、正方向和单位长度。
三、实例讲解1. 教师利用数轴图示,讲解数轴的三要素。
2. 教师通过实际操作,展示如何用数轴上的点表示有理数。
3. 教师举例说明,如何判断两个有理数的大小关系。
四、练习巩固1. 学生独立完成教学卡片上的练习题。
2. 学生分组讨论,互相讲解解题过程。
五、总结拓展1. 学生总结数轴的概念和应用。
2. 教师提出拓展问题,引导学生思考数轴在实际生活中的应用。
教学反思:本节课通过实例引入数轴的概念,引导学生思考数的表示方法,让学生在实际操作中理解数轴的三要素和有理数与数轴上的点的对应关系。
在教学过程中,注意引导学生思考,激发学生的学习兴趣。
通过练习题和分组讨论,巩固所学知识,提高学生的实际应用能力。
总体来说,本节课达到了预期的教学目标。
初中数学数轴的教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。
2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
3. 在数与形结合的过程中,体会数学学习的乐趣。
教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。
2. 数形结合的思想方法。
教学准备:1. 数轴的教具。
2. 学生用书。
教学过程:一、引入新课1. 利用温度计的实例,让学生观察温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,即数轴。
2. 提出问题:我们在生活中经常会遇到具有相反意义的量,比如东与西、上与下、左与右等,那么在数学中,我们如何表示这些具有相反意义的量呢?二、探索新知1. 教师引导学生进行小组讨论,用画图的形式表示东西向马路上杨树、柳树、汽车站牌三者之间的关系。
2. 学生画图表示后,教师提问:如何用数表示这些树、电线杆与汽车站牌的相对位置呢?3. 教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素是原点、正方向和单位长度。
4. 教师引导学生思考:0代表什么?数的符号的实际意义是什么?学生对照体温计进行解答。
5. 教师讲解数轴的表示方法,引导学生理解数形结合的思想。
三、巩固新知1. 学生自主完成教材中的练习题,巩固数轴的概念和表示方法。
2. 教师选取一些典型的练习题,让学生上黑板演示,并解释答案的得出过程。
四、拓展与应用1. 教师提出一些实际问题,让学生运用数轴的知识进行解决,如:小明从家出发,向正东方向走了5公里,然后又向正西方向走了3公里,他现在离家多少公里?2. 学生独立思考,画出数轴,解决问题。
五、总结与反思1. 教师引导学生回顾本节课所学的内容,总结数轴的概念和表示方法。
2. 学生分享自己在学习过程中的收获和感受,教师给予鼓励和指导。
教学评价:1. 学生对数轴的概念和表示方法的掌握程度。
2. 学生在实际问题中运用数轴的能力。
数轴教案(优秀10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!数轴教案(优秀10篇)举报信文化建设反问句主要,习题对策三字经卷首,文言文民族申请书广播稿说说的自我介绍问候语了记事工作打算弘扬的挑战书词语简报答谢词规章。
人教版初中七年级数学第一单元有理数《1.2.2数轴》教学设计一、教学内容分析数轴是一个重要的概念,后续的平面直角坐标系也是以它为基础的.这是学生第一次学习数形结合的思想.数轴实际就是有理数的形的表示载体,或者说是有理数的另一种表示形式.如果要对有理数有一个深刻的理解,除了从符号的形式理解外,还要从形的角度理解有理数.如何利用数形结合理解有理数是本课时教学的关键问题.学生在本节课上已经完成了第一课时布置的任务:绘制一条路上的几个建筑物的位置关系图,并用文字语言描述建筑物的位置关系.以右图为例,如果想要准确地描述建筑物的位置关系,如体育馆在校史馆的西边25 m处,那么就要说清楚参考标准,以及建筑物相对参考标准的方向及距离,才能准确地表示出建筑物相对的位置关系,这三点缺少一个都无法准确地表示建筑物的位置关系.例如,如果缺少参考标准,那么体育馆可能在校史馆的西边25 m处,也可能在荣光楼的西边25 m处,这个位置是无法确定的;如果缺少方向,那么体育馆有可能在校史馆的西边25 m处,也有可能在校史馆的东边25 m处,位置无法确定;如果缺少距离,那么体育馆可能在校史馆的西边25 m处或是50 m处等等,位置也是无法确定下来的.因此,想要描述物体的位置关系,参考基准、方向和距离是缺一不可的.为了更加简洁地表示出位置关系,我们借用了数轴这一数学工具,用数学语言表示物体的位置关系.参考基准即为数轴上的原点,方向即为数轴上的正方向,距离体现为数轴上的单位长度.例如,如果以校史馆为原点,向东为正方向,单位长度为25 m,如下图,那么体育馆可以表示为-50 m处,用一个数字就简化了表示物体位置关系的方式,同样是一个数,在数轴上就具有了几何的意义:符号表示的是方向,符号后面的数表示的是距离原点的距离,这是我们后面课时要学习的内容.教材中给出的数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…,从原点向左,用类似的方法依次表示-1,-2,-3,…,如下图:根据研究概念的四个维度,我们从特征、由来、与已有知识的联系与区别、应用这几个角度对数轴进行总结:(1)特征:根据定义,数轴首先是一条直线,并且具备三个要素:原点、正方向和单位长度.这几个条件缺一不可,否则无法描述物体的位置关系.但是在选择原点、正方向和单位长度时取法是不唯一的,选择不同的取法,对应的数轴就会不同,表示物体位置的数也就会不同.(2)由来:用数简明地表示物体的位置关系.(3)与已有知识的联系与区别:数轴,拆开来就是数和轴.数轴与数有关,与直线也有关,这条直线具有原点、正方向和单位长度.给定一个数,可以在数轴上找到该数对应的点;给定数轴上的一个点,也可以读出该点对应的数.数的变化在数轴上体现为点动,反之,数轴上的点动体现为点所对应的数的变化.第二课时中有理数的分类,借助数轴能够更直观地分辨出正数、负数和0.要注意的是,有理数与数轴上点的关系:所有的有理数都可以用数轴表示,但不能说数轴上的点仅仅表示有理数.(4)应用:表示位置关系二、学情分析学生通过自主学习初步掌握了数轴及如何利用数轴表示位置关系等内容,并且完成了主干路上几个建筑物的位置关系图,能够描述出这些建筑物的位置关系. 但是为什么用数轴表示物体的位置关系?为什么数轴要有原点、正方向和单位长度?这三个要素是否是必备的?这些问题学生还理解不到位.学生由于第一次接触数形结合的思想,对于数在数轴上的几何意义还不能完全理解.因此,要结合学生完成的实际任务对上述问题进行分析.此外,数轴三要素的取法并不是唯一的,当选取的三要素发生变化时,同一个点所表示的数就会发生变化.下题是北京市2018年中考数学第8题,当平面直角坐标系的原点及单位长度发生变化时对应同一个点坐标的变化,学生作答情况并不好.平面直角坐标系是以数轴为基础进行学习的,因此学生要牢牢掌握数轴的基本知识,特别是落实清楚三要素变化对点所对应的数变化的影响(2018·北京)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④三、教学目标1.明确数轴三要素的作用,会画数轴.2.能读出数轴上的点所表示的有理数.3.能将有理数对应的点表示在数轴上.4.学会运用数形结合的思想解决问题●重点体会数轴三要素的作用,能够依据三要素的变化确定数轴上数的变化●难点理解有理数在数轴上的几何意义,学会运用数形结合思想解决问题四、评价设计学习评价量表五、教学活动设计置关系? 2.根据前两个活动的讨论结果,学生了解到数轴的三个要素是缺一不可的,原点、正方向、单位长度对于描述位置关系都有重要作用.3.在数轴上,我们用一个点表示物体所在的位置,那么该点所对应的数就能够体现出物体的位置.例如,根据上图所示,以校史馆为原点,向东为正方向,25 m为单位长度建立数轴,则体育馆在-50 m所对应的点的位置.-50 m中负号体现的是方向,与正方向相反,为向西;50表示体育馆到原点,即到校史馆的距离为50 m.4.总结:有理数在数轴上的几何意义:一个有理数对应为数轴上的一个点,体现了这个点的位置,符号表示点相对原点的方向,符号后面的数字体现为该点到原点的距离. 个环节对物体位置关系的描述,类比到数轴中来,让学生体会数轴三要素的作用,以及三要素选取不同,对应的点所表示的数不同等知识点.1.根据下图所示的文字语言,选取不同的原点画数轴,并把建筑物用点表示在数轴上.(1)以校史馆为原点(2)以荣光楼为原点六、板书设计七、达标检测与作业1.(A)画一条数轴,将有理数235,332--,,分别表示在数轴上,并依次记作点A,B,C,D.2.(A)把数轴上各点表示的数写出来.3.(B)数轴上点 M表示2,点N表示-3.5,点A表示-1,在点 M和点N中距离点A 较远的点是.4.(B)已知数轴上有A,B两点,A,B之间的距离为3,点A与原点O的距离为3,那么点B表示的数为.5.(B)如果将5个城市的国际标准时间(单位:时)在数轴上表示(如下图所示),那么北京时间2016年8月8日20时应是()A.伦敦时间2016年8月8日11时B.巴黎时间2016年8月8日13时C.纽约时间2016年8月8日5时D.首尔时间2016年8月8日19时6.(B)下图是北京地铁1号线一些站点的分布示意图.在图中,以东为正方向建立数轴.有如下四个结论:①当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-3.5时,表示公主坟的点所表示的数为6;②当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-7时,表示公主坟的点所表示的数为12;③当表示五棵松的点所表示的数为1,表示玉泉路的点所表示的数为-2.5时表示公主坟的点所表示的数为7;④当表示五棵松的点所表示的数为2,表示玉泉路的点所表示的数为-5时,表示公主坟的点所表示的数为14上述结论中正确的是()A.①②③B.②③④C.①④D.①②③④7.(B)小华骑车从家出发,先向东骑行2km到A村,继续向东骑行3km到达B村,接着又向西骑行9km到达C村,最后回到家.试回答下列问题:(1)画一条数轴,以家为原点,以向东方向为正方向,表示出家以及A,B,C 三个村庄的位置;(2)C村离A村有多远?(3)小华一共行驶了多少千米?8.(C)已知有理数-4,2,3543,在数轴上对应的点分别为A,B,C,D将点A向右移动5个单位长度,再向左移动2个单位长度后表示的数为;若点E向右移1个单位长度后恰好落在点C处,则点E表示的数为;B,E两点之间的距离为;若点F与点C关于原点对称,则点F表示的数为;若点G到点D的距离为3,则点G表示的数为.9.(C)如下图所示,一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时则它的左端在数轴上所对应的数为5,用1个单位长度表示1cm,由此可得到木棒长为.(2)受题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了?八、教学反思本课时旨在通过实际任务让学生认识数轴在表示物体位置关系时的简洁,让学生理解为什么要引入数轴,以及三要素的重要作用.数形结合思想是本节课重点渗透的思想,通过用数轴上的点表示物体,用点所对应的数表示点的位置,将有理数和数轴上的点对应起来,从而有理数就有了几何意义,其符号和符号后面的数字分别对应的是相对原点的方向和距离.在教学中,由于三要素选取不同,学生绘制的数轴各不相同.学生提前自主学习时对规范性没有要求,因此一开始画出的数轴并不标准,所以在课堂上教师需要规范这一标准.学生通过一系列的练习后可以进一步感知有理数在数轴上的几何意义.在运用数形结合思想解决问题时,有些学生还不能在本节课一下子吸收掌握,因此教师要逐渐渗透数轴还有一个非常大的作用就是让数变得有“序”,可以利用这点比较多个数的大小,这是之后学习的内容.但是在教学中,学生还较难发现这点,需要教师引导指出本节课在实施过程中虽然留给学生思考时间,但是学生交流讨论的时间还是不够,例如,三要素的选取这部分可以让学生通过完成实际任务自己发现这一结论,也可以引导学生自己提出变换原点、正方向、单位长度去表示位置关系这一问题.。
第2章第2课时 2.2数轴(1) 总第10课时【学习目标】1理解数轴的意义及数轴的三要素,并能正确画出数轴。
2、会由数轴上的已知点,说出它所表示的数,并能将有理数用数轴上的点表示出来。
【学习重点】知道数轴的三要素,并会把有理数用数轴上的点表示出来。
【学习难点】理解数轴的意义及数轴的三要素,能正确的画出数轴。
【学习过程】(教师寄语:当你的态度发生转变的时候,在学习上有什么不可以!)一、课前预习:(认真预习,就意味着你走上了一条成功的学习之路!)学习任务一:自学课本第31—32页,初步认识数轴及其要素。
回答下列问题:1、下图是水平放置的温度计,你能读出温度计上显示的温度吗?2、数轴的概念:3、按照下列步骤画图,知道数轴的三要素:①画一条水平直线,在直线上任意取一点做为原点,用这个点表示0;②选取适当的长度作为单位长度;③规定直线向右的方向为正方向。
4、请你用上面你画的数轴上的点表示1和—3.5.学习任务二:学习课本第32页例1,会用数轴表示数,完成下列题目。
1、画出数轴,并用数轴上的点表示下列各数:—2,—2.5,,0,5, 3.5,2、指出下图中数轴上的点A 、B 、C 、D 、E 分别表示的有理数:预习质疑:我在学习中的疑问:(提出一个问题比解决一个问题更有价值)32预习检测:(自我检测很重要)1、在数轴上,由原点开始向左移动3个单位长度,再往右移动6个单位长度,到达的点数是2、判断:(1)、在数轴上离原点4个单位长度的数是4.( )(2)、数轴就是规定原点和正方向的直线。
( )3、二、拓展提升:(认真反思就会有提高。
)1、在数轴上,点M到点-1.5的距离是5,则M表示的数是 。
2、写出大于-4.1小于2.5的所有整数,并把它们在数轴上表示出来。
3、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一颗椿树。
你能用数学图形来表示上述信息吗?三、系统总结:(注意从知识和方法上总结)四、达标检测:(总10分)总得分:1、下列说法是否正确?(2分)⑴在数轴上,与原点的距离越大的点表示的数越大。