合成氨生产常用的原料有哪些
- 格式:doc
- 大小:796.50 KB
- 文档页数:11
1合成氨生产常用的原料有哪些?原料:(包括提供H2的原料和燃料)固体原料:焦碳、煤气体原料:天然气、重油、焦炉气等液体原料:石脑油、重油、原油等常用的原料有:焦碳、煤、天然气、重油2合成氨生产分哪几个基本工序?三个基本工艺步骤是什么/(1)造气:即制备含有氢、氮的原料气(2)净化:不论采用何种原料和何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质。
(3)压缩和合成:将合格的氮、氢混合气压压缩到高压,在铁催化剂的存在下合成氨。
3写出天燃气蒸汽转化法生产合成气的主要反应方程式、工艺条件和工艺流程图,说明天然气蒸汽转化法为何要进行二段转化操作?(1)主反应式:CH4 + H2O(g) = CO + 3H2 206.3KJ/mol (1)CO + H2O(g) = CO2 + H2 -41.2KJ/mol (2)副反应式:CH4 = 2H2 + C2CO = CO2 + CCO + H2 = H2O + C(2)工艺条件:压力3~4 MPa;一段转化反应温度800℃;二段转化反应温度1000℃;水碳比S=3~4;空间速度(根据炉型、分段情况、催化剂的不同以及反应的不同时期来确定)(4)书上18页第一段4干法脱硫与湿法脱硫各有甚么优缺点?干法:优点:既能脱除有机硫,又能脱除无机硫;出口气含S<1×10-6(无加氢)、S<2×10-8(有加氢)。
缺点:脱硫剂再生困难,只可用于脱微量硫。
湿法:优点:液态脱硫剂易于输送,可以再生,能回收硫磺,可用于脱除大量无机硫。
5改良ADA法脱硫由哪几个基本反应过程构成?原理:分为四步:①用pH=8.5~9.2的稀碱溶液吸收H2SNa2CO3 + H2S == NaHS + NaHCO3②硫氢化物被氧化为S2NaHS + 4NaVO3 + H2O == Na2V4O9 + 4NaOH + 2S偏钒酸钠焦性偏钒酸钠(有还原性)以上两步为脱硫,在脱硫塔中进行。
合成氨工艺中氨的用途合成氨工艺中氨的应用非常广泛。
以下是几个主要的用途:1. 化肥生产:氨是制造氮肥的主要原料,如尿素、硝酸铵和氨水等。
氨能够提供植物所需的氮元素,促进作物生长和增加产量。
因此,合成氨工艺对农业的发展至关重要。
2. 工业用途:氨在工业生产中有着广泛的应用。
它可以作为溶剂和中间体,用于制造染料、涂料、胶粘剂、塑料、橡胶和合成纤维等。
此外,氨还被用于生产化学品和制药工业,如硫酸铵、硫酸、硝酸和乙酰胺等。
3. 清洁能源:氨被视为一种可再生清洁能源的替代品。
它可以作为燃料在内燃机和燃料电池中使用,产生高效且低碳的能量。
由于氨的燃烧仅产生氮气和水,没有二氧化碳的排放,因此被认为是一种环保的能源选择。
4. 金属处理:氨在金属加工和处理过程中有着重要的作用。
它可以用作焊接和铸造工艺中的气体保护剂、脱氧剂和还原剂。
氨气可以有效地减少金属的氧化,并提高金属材料的质量和强度。
5. 冷冻和制冷:氨被广泛应用于冷冻和制冷行业。
由于其低温蒸发和良好的热导性能,氨可以用于制造制冷剂和冷却剂。
它常常与蒸发器、蒸缸和冷凝器等设备结合使用,用于冷冻食品、制冷设备和空调系统。
6. 污水处理:氨在污水处理中起着重要作用。
氨可以在生物处理和气体混凝反应中用作营养物质,促进有益微生物的繁殖和生长,以去除废水中的有机物和有害物质。
7. 硫酸铵生产:合成氨是生产硫酸铵的重要原料。
硫酸铵是一种重要的化肥,也用于工业和农田的土壤改良。
它可以增加土壤的肥力和保水性,并提高作物产量。
总的来说,氨在农业、工业、能源、金属处理、冷冻制冷、污水处理和硫酸铵生产等方面都有着广泛的应用。
氨作为一种重要的化学原料和能源载体,在社会和经济发展中起到了不可或缺的作用,对各个行业的发展都有巨大的推动作用。
合成氨工艺简介工艺危险特点:1 高温、高压使可燃气体爆炸极限扩宽,气体物料一旦过氧(亦称透氧),极易在设备和管道内发生爆炸。
2 高温、高压气体物料从设备管线泄露时会迅速膨胀与空气混合形成爆炸性混合物,遇到明火或因郜流速物料与裂(喷)口处摩擦产生静电火花引起着火和空间爆炸。
3 气体压缩机等转动设备在高温下运行会使润滑油挥发裂解,在附近管道内造成积炭,可导致积炭燃烧和爆炸。
4 高温、高压可加速设备金属材料发生蠕变、改变金相组织,还会加剧氢气、氮气对钢材的氢蚀和渗氮,加剧设备的疲劳腐蚀,使其机械强度减弱,引发物理爆炸。
5 液氨大规模事故性泄露会形成低温云团引起大范围人群中毒,遇明火还会发生空间爆炸。
合成氨指由氮和氢在高温高压和催化剂存在下直接合成氨,为一种基本无机化工流程。
现代化学工业中,氨是化肥工业和基本有机化工的主要原料。
工艺流程1 原料气制备(制备H2、CO、N2的粗原料气)1-1煤气化煤气化是用气化剂对煤或焦炭等固体燃料进行热加工,使其转变为可燃性气体的过程,简称造气。
气化剂主要是水蒸气、空气(或氧气)及它们的混合气体。
对于固体原料煤和焦炭,通常采用气化的方法制取合成气;空气煤气:以空气为气化剂制取的煤气,主要成分为N2和CO2。
合成氨生产中也称之为吹风气。
水煤气:以水蒸气为气化剂制得的煤气,主要成分H2和CO。
混合煤气:以空气和适量水蒸气为气化剂。
半水煤气:以适量空气和水蒸气做气化剂,所得气体组成符合([H2]+[CO])/[N2]=3.1~3.2的混合煤气,即合成氨的原料气。
1-1-1 以空气为气化剂-空气煤气,其主要成分为空气和二氧化碳C + O2 = CO2C + 1/2O2 = COC + CO2 = 2COCO + 1/2O2 = 2CO21-1-2 以水蒸气为气化剂-水煤气,其主要成分为氢气和一氧化碳。
C + H2O = CO + H2C + 2H2O = CO2 + 2H2CO + H2O = CO2 + H2C + 2H2 = CH41-1-3 间歇式生产半水煤气1-1-3-1固定床煤气发生炉右图为间歇式固定床煤气发生炉燃料层分区示意图。
合成氨生产工艺合成氨生产原理:氨是一种重要的化工原料,特别是生产化肥的原料,它是由氢和氮合成。
合成氨工业是氮肥工业的基础。
为了生产氨,一般均以各种燃料为原料。
首先,制成含H2和CO等组分的煤气,然后,采用各种净化方法,除去气体中的灰尘、H2S、有机硫化物、CO、CO2等有害杂质,以获得符合氨合成要求的洁净的1:3的氮氢混合气,最后,氮氢混合气经过压缩至15Mpa以上,借助催化剂合成氨。
1、合成氨生产工艺介绍造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。
具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。
原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。
所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。
造气工艺流程示意图2、脱硫工段煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。
气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。
脱硫液再生后循环使用。
脱硫工艺流程图3、变换工段变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。
河南中科化工有限责任公司采用的是中变串低变工艺流程。
经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。
变换工艺流程图4、变换气脱硫与脱碳经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。
脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。
来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。
合成氨生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。
天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。
随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。
硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。
液氨常用作制冷剂。
合成氨的工艺流程1原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。
对于固体原料煤和焦炭,通常采用气化的方法制取合成气;2净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程①一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。
合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。
变换反应如下:CO+H2O→H2+CO2=-41.2kJ/mol0298HΔ由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。
第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。
因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
论述合成氨原料结构的变化趋势。
合成氨是一种重要的化学原料,广泛应用于农业、化工、医药等领域。
其原料结构的变化趋势对合成氨的生产工艺和效率具有重要影响。
本文将从原料结构的变化趋势角度进行论述。
合成氨的原料主要是氮气和氢气。
氮气是大气中最主要的成分之一,具有极高的稳定性和惰性。
而氢气则是一种非常丰富的可再生能源。
因此,氮气和氢气作为合成氨的原料具有广泛的来源和可持续性。
合成氨的原料结构的变化趋势主要集中在改变氮气和氢气的反应条件和催化剂。
在传统的合成氨工艺中,常使用费托合成法,即在高温高压条件下,通过铁催化剂催化氮气和氢气的结合反应。
随着科学技术的不断发展,研究人员发现了更高效的催化剂和反应条件,从而改变了原料结构的选择。
例如,近年来,广泛应用的一种新型合成氨原料结构是固定床催化剂。
这种催化剂通常由铁、钼、钾等元素组成,具有较高的活性和选择性。
相比于传统的费托合成法,固定床催化剂能够在较低的温度和压力下实现氮气和氢气的反应,降低了生产成本和能源消耗。
还有一种新兴的合成氨原料结构是等离子体催化法。
该方法利用等离子体的高能量特性,将氮气和氢气分解为活性的氮和氢原子,然后使其在催化剂的作用下重新组合成合成氨。
相比于传统的热力学反应,等离子体催化法具有更高的反应速率和选择性,能够实现更高效的合成氨生产。
还有一些新型的原料结构正在研究和开发中,如光催化剂、电催化剂等。
这些原料结构利用光能或电能来促进氮气和氢气的反应,具有更绿色和可持续的特点。
虽然这些新型原料结构在实际应用中还存在一些技术挑战,但它们代表了合成氨生产的未来发展方向。
合成氨原料结构的变化趋势主要包括固定床催化剂、等离子体催化法、光催化剂和电催化剂等。
这些新型的原料结构在提高合成氨生产效率、降低成本和能源消耗方面具有巨大潜力。
随着科学技术的不断进步,合成氨生产工艺将会越来越趋向于高效、环保和可持续发展的方向。
室温合成氨是一种重要的化学合成过程,通过在高压氮气流中使用石墨催化剂,可以在室温下有效地合成氨。
本文将对室温合成氨的原理、工艺流程和应用进行详细介绍。
一、室温合成氨的原理室温合成氨是指在常温下进行氨的合成反应。
该反应通常使用高压氮气流和催化剂在反应器中进行。
在常温下进行氨的合成反应对能源的消耗较小,适用于大规模工业生产。
二、室温合成氨的工艺流程1.原料准备:室温合成氨的主要原料为氮气和氢气。
氮气通常通过空气分离装置获取,而氢气则可以通过蒸汽重整法或其他方法制备。
2.反应器设计:室温合成氨的反应器通常采用高压容器,具有合适的密封性能和耐压性能。
反应器内部还需要放置石墨催化剂床,以促进氨的合成反应。
3.催化剂的选择:石墨是一种常用的催化剂,具有良好的导热性和化学稳定性。
其表面还可以容纳氨合成反应所需的活性中心,因此在室温合成氨的工艺中具有重要的应用价值。
4.反应条件控制:室温合成氨的反应条件通常以高压氮气流作为保护气体,同时需要控制合适的反应温度和压力条件,以促进氨的合成反应。
5.产品分离纯化:室温合成氨反应结束后,需要对产物进行分离和纯化处理,以获得高纯度的氨气。
三、室温合成氨的应用室温合成氨具有广泛的应用价值,主要用于化工行业的氨合成及相关领域的制氢反应。
具体包括:- 合成氨肥料的生产:氨是植物生长过程中必需的氮源,因此被广泛用于合成氨肥料的生产。
- 化学工业中的氨制备:氨用于生产硝酸、尿素等化工产品。
- 氨的储运和制冷:由于氨易液化,因此还用于工业领域的制冷和储运等方面。
室温合成氨的工艺具有能源消耗小、成本低等优点,因此在工业生产中具有重要的应用前景,尤其对于一些无法进行高温高压氨合成的场合具有特殊意义。
室温合成氨是一种重要的化学合成过程,利用高压氮气流和石墨催化剂可以在室温下高效地合成氨。
该工艺的原理、工艺流程和应用具有重要的工业应用意义,对于促进氨合成技术的发展和工业化生产具有重要的推动作用。
合成氨的工艺流程需要的燃料下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!合成氨是一种重要的化工原料,广泛应用于农业、工业等领域。
合成氨的制备合成氨(Ammonia)是一种重要的化工原料,广泛应用于肥料、塑料、石油化工等领域。
它是含有一个氮原子和三个氢原子的无机化合物,分子式为NH3。
在实验室中,合成氨通常使用哈伯-博斯曼过程(Haber-Bosch process)制备。
哈伯-博斯曼过程是由德国化学家弗里德里希·哈伯和卡尔·博斯曼于20世纪初发现和改进的。
这是一种在高温高压条件下将氮气和氢气进行反应生成氨气的过程。
该过程需要一个催化剂,通常是铁或铑催化剂。
这种催化剂可以加速氮分子和氢分子之间的反应速率。
合成氨的制备包括三个主要步骤:氮气的制备、氢气的制备和氮气与氢气的反应。
首先,氮气通常是从空气中分离出来的。
空气中含有约78%的氮气,20%的氧气以及少量的水蒸气和其他气体。
氮气可以通过空分过程或吸附过程来分离。
空分过程通过膜分离、吸附、凝固和压缩等步骤将氮气和氧气分离开来。
在吸附过程中,氮气可以在分子筛或活性炭等吸附剂上被吸附,而氧气则通过。
通过这些步骤,可以得到高纯度的氮气供给合成氨的生产过程使用。
其次,氢气的制备也是合成氨制备过程中的关键步骤。
氢气通常是通过水蒸气重整(Steam Reforming)或部分氧化(Partial Oxidation)反应制备的。
水蒸气重整是将天然气、液化石油气等烃类燃料和水蒸气反应,生成氢气和一氧化碳。
在部分氧化反应中,燃料和氧气在催化剂的作用下反应,生成氢气和一氧化碳。
这些方法可以获得高纯度的氢气用于合成氨的制备。
最后,氮气和氢气按照一定的比例在催化剂的存在下进行反应生成氨气。
一般情况下,反应的温度在400-500摄氏度之间,压力在150-200大气压之间。
与哈伯-博斯曼过程一样,该反应通常采用铁或铑催化剂。
反应可以通过循环往复的方式进行,保持反应的平衡。
需要注意的是,合成氨的过程需要耗费大量的能量,因此能源的消耗占据了生产成本的一大部分。
同时,该过程中会产生一些副产品,如一氧化碳和二氧化碳等。
合成氨生产技术第一节 概述氨是化学工业中产量最大的产品之一,是化肥工业和其他化工产品的主要原料。
现约有80%的氨用于制造化学肥料,除氨本身可用作化肥外,可以加工成各种氮肥和含氮复合肥料,如尿素、硫酸铵、氯化铵、硝酸铵、磷酸铵等。
可以生产硝酸、纯碱,含氮无机盐等。
氨还被广泛用于有机化工、制药工业、化纤和塑料工业以及国防工业中。
因此,氨在国民经济中占有重要地位。
目前氨是由氮气和氢气在高温、高压和催化剂作用下直接合成而得。
除电解法外,不管用何种原料制得的粗原料气中都含有硫化物、一氧化碳、二氧化碳,这些物质都是氨合成催化剂的毒物,在进行合成之前,需将其彻底清除。
因此,合成氨的生产过程包括以下三个主要步骤。
原料气的制取 制备含有氢气、一氧化碳、氮气的粗原料气。
原料气的净化 指除去原料气中氢气、氮气以外的杂质,一般由原料气的脱硫,一氧化碳的变换,二氧化碳的脱除,原料气的精炼等组成。
原料气压缩与合成 将符合要求的氢氮混合气压缩到一定的压力,在铁催化剂与高温条件下合成为氨。
第二节 原料气的制备目前,合成氨生产原料按状态分主要有固体原料,如焦炭和煤;气体原料,如天然气、油田气、焦炉气、石油废气、有机合成废气;液体原料,如石脑油、重油等。
生产方法主要有固体燃料气化法(煤或焦炭),烃类蒸汽转化法(气态烃、石脑油),重油部分氧化法(重油)。
一、固体燃料气化法固体燃料气化过程是以煤或焦炭为原料,在一定的高温条件下通入空气、水蒸气或富氧空气-水蒸气混合气,经过一系列反应生成含有一氧化碳、二氧化碳、氢气、氮气及甲烷等混合气体的过程。
在气化过程中所使用的空气、水蒸气或富氧空气-水蒸气混合气等称为气化剂。
这种生成的混合气体称为煤气。
用于实现气化过程的设备称为煤气发生炉。
煤或焦炭气化因采用不同的气化剂,可以生产出下列几种不同用途的工业煤气: ①空气煤气。
以空气作为气化剂所制得的煤气。
按体积分数计,其中约有50%的N 2,一定量的CO及少量的CO2和H2。
合成氨是一种重要的化工原料,广泛应用于农业、化工和医药等领域。
合成氨的生产过程是一个复杂而精密的工艺流程,包括多个主要步骤。
本文将从以下三个主要步骤来详细介绍合成氨的生产过程。
一、氮气和氢气的准备合成氨的生产过程首先需要准备氮气和氢气。
氮气通常从空气中通过分离提炼获得,而氢气则是通过蒸汽重整、水煤气变换或其他方法制备。
这两种气体的准备需要高纯度和高效率,以确保生产后的合成氨质量。
1. 氮气的提炼氮气的提炼通常采用分子筛吸附法或低温分馏法。
在分子筛吸附法中,空气首先经过过滤和去除杂质的处理,然后通过分子筛吸附剂进行分离,从而获得高纯度的氮气。
而低温分馏法则是利用空气中的氮气和氧气的沸点差异,通过低温冷却凝结氮气,然后采用分馏的方法将氮气和氧气分离。
2. 氢气的制备氢气的制备方法多种多样,常见的包括蒸汽重整法和水煤气变换法。
在蒸汽重整法中,石油制品或天然气经过蒸馏和蒸汽重整反应产生氢气;而水煤气变换法则是通过水蒸气与煤气或重油反应得到氢气。
无论是哪种方法,制备氢气都需要高效能的反应装置和精密的控制系统,以确保生产出高纯度的氢气。
二、氮氢混合气的合成当氮气和氢气准备好后,接下来的主要步骤是将两者合成为氨气。
这一步骤通常采用哈布法,通过高温高压下的催化反应将氮气和氢气合成氨气。
1. 反应装置哈布法的反应装置是合成氨过程中最关键的部分。
通常采用的是固定床反应器,反应器内填充有合成氨的催化剂,然后将预热的氮氢混合气以一定的流量输送到反应器中。
反应器的设计和运行需要考虑到高温高压下的工艺安全和高效能的问题,同时还要考虑催化剂的运转和再生等技术性问题。
2. 反应条件在哈布法的反应条件中,温度和压力是两个至关重要的因素。
一般情况下,合成氨的反应温度在350-550℃之间,压力在100-300大气压之间。
还需要考虑反应速率与选择性、热力学与动力学等因素,以保证合成氨的产率和质量。
三、氨气的精馏和提纯合成氨的最后一个主要步骤是氨气的精馏和提纯。
工业合成氨催化剂的主要成分
1工业合成氨催化剂
工业合成氨是大规模生产氨的一种方法。
这种方法用来取代传统的方法,例如硫酸-硝酸法和氢-氧法,亦或是来自燃烧气体氨的捕捉。
工业合成氨的主要原料包括氮气(N2)和氢气(H2),它们以高温反应,以产生氨(NH3)。
氮气与氢气在反应过程中可以形成氨,这种反应通常称为氨合成反应,又称Haber-Bosch反应。
而工业合成氨催化剂是氨合成反应的关键参与者,它有助于加速反应的进程,从而大大减少反应所需时间,提高氨的产量。
在反应过程中,催化剂的主要作用是“激活”氢气分子,使其可以与氮气分子有效地反应,生成氨分子。
这种催化剂具有金属结构,有时包含卤素或氟等元素。
最常见的氨合成催化剂是铈催化剂和钌催化剂。
铈和钌在温度范围内都具有活性,可以在中性或碱性条件下发挥作用。
他们之间的化合物表现出不同程度的催化活性,铈取得的效果比钌略逊一筹。
然而,无论是金属铈或钌,它们都可以兼顾活性和稳定性,使得它们可靠、节能、低噪声地运行,并且产生的氨可以达到最高产量和最佳质量。
在反应条件允许的情况下,氨合成催化剂可以有效地催化氨的反应,从而达到减少原料消耗、减少能耗消耗、降低产品细节以及提高反应速率等优势。
同时,它们还可以延长催化剂的使用寿命,降低催化剂更换的费用支出,使工业合成氨的生产更加可靠和高效。
工业合成氨的方法
工业合成氨主要有哈伯-博斯曼法和奥让-吕克法两种方法。
1. 哈伯-博斯曼法:也称为直接合成法。
该方法通过在高温高压下将氮气和氢气反应生成氨气。
反应以铁为催化剂,常温下反应速度较慢,需要加热至400-500摄氏度,压力高达100-200atm。
该方法是工业上最常用的氨合成方法,能够大量生产氨气。
2. 奥让-吕克法:也称为间接合成法。
该方法先将天然气(主要是甲烷)转化为一氧化碳和氢气,然后通过费舍尔-通纳合成反应将一氧化碳和氢气合成为甲醇。
最后,将甲醇通过催化剂进行裂解,生成氢气和一氧化碳,再与氮气进行合成反应得到氨气。
这种方法相对复杂,但可以通过更加便宜的原料制备氨气。
这两种方法都能够实现大规模的工业合成氨气。
在实际应用中,根据不同的条件和资源的可获得性,选择合适的方法进行氨气的合成。
中盐红四方合成氨生产工艺中盐红四方是一个具有重要经济价值的合成氨工艺。
合成氨是一种重要的化学原料,广泛应用于农业、农村、工业、医药等领域。
通过合成氨生产,可以满足人们对于氨的需求,提高农作物的产量和品质,促进农业的发展。
首先,合成氨生产工艺涉及到催化剂的选择。
中盐红四方合成氨使用的催化剂是铁铝催化剂。
铁铝催化剂具有高活性和高稳定性的特点,同时还能抑制氨合成过程中的副反应。
其次,需要准备适当的原料。
合成氨的原料主要包括氮气和氢气。
氮气可通过从大气中分离得到,而氢气则可以通过煤气、天然气等常用燃料进行制备。
为了保证原料的质量和纯度,还需要进行相应的净化处理。
接下来是催化反应过程。
在反应器中,将氮气和氢气按照一定的比例混合后,进入催化剂床层。
催化剂床层的作用是提供活性表面,促进氮气和氢气发生反应生成氨。
实际上,合成氨的反应是一个平衡反应,需要通过调节温度和压力以及气体流速来控制反应速率和转化率。
在进行合成氨反应时,可以采用两种典型的反应器,即间歇式和连续式。
间歇式反应器适用于小规模生产,具有灵活性和操作简单的特点。
而连续式反应器则适用于大规模生产,能够实现连续供气和排放产气,提高生产效率。
随着反应的进行,产生的氨需要进行分离和纯化。
这一过程主要包括分离器和纯化塔等设备的运用。
其中,分离器主要用于将产生的氨气和未反应的氮气和氢气分离开来,以便进一步处理。
纯化塔则可以去除氨气中的杂质和水分,提高氨气的纯度。
最后,还需要将产生的纯化氨气进行储存和包装。
储存过程需要注意氨气的特殊性质,防止泄漏和安全事故发生。
对于包装氨气,则需要选择合适的容器,并进行密封包装,以保证氨气的稳定性和安全性。
综上所述,中盐红四方合成氨生产工艺是一个涉及多个步骤和设备的复杂过程。
通过合理选择催化剂、准备原料、控制反应条件、分离纯化产物等措施,可以有效地实现合成氨的生产,满足人们对氨的需求,促进相关领域的发展。
合成氨生产常用原料有些1合成氨生产常用的原料有哪些?原料:(包括提供H2的原料和燃料)固体原料:焦碳、煤气体原料:天然气、重油、焦炉气等液体原料:石脑油、重油、原油等常用的原料有:焦碳、煤、天然气、重油2合成氨生产分哪几个基本工序?三个基本工艺步骤是什么/(1)造气:即制备含有氢、氮的原料气(2)净化:不论采用何种原料和何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质。
(3)压缩和合成:将合格的氮、氢混合气压压缩到高压,在铁催化剂的存在下合成氨。
3写出天燃气蒸汽转化法生产合成气的主要反应方程式、工艺条件和工艺流程图,说明天然气蒸汽转化法为何要进行二段转化操作?(1)主反应式:CH4 + H2O(g) = CO + 3H2 206.3KJ/mol (1)CO + H2O(g) = CO2 + H2 -41.2KJ/mol (2)副反应式:CH4 = 2H2 + C2CO = CO2 + CCO + H2 = H2O + C(2)工艺条件:压力3~4 MPa;一段转化反应温度800℃;二段转化反应温度1000℃;水碳比S=3~4;空间速度(根据炉型、分段情况、催化剂的不同以及反应的不同时期来确定)(4)书上18页第一段4干法脱硫与湿法脱硫各有甚么优缺点?干法:优点:既能脱除有机硫,又能脱除无机硫;出口气含S<1×10-6(无加氢)、S<2×10-8(有加氢)。
缺点:脱硫剂再生困难,只可用于脱微量硫。
湿法:优点:液态脱硫剂易于输送,可以再生,能回收硫磺,可用于脱除大量无机硫。
5改良ADA法脱硫由哪几个基本反应过程构成?原理:分为四步:①用pH=8.5~9.2的稀碱溶液吸收H2SNa2CO3 + H2S == NaHS + NaHCO3②硫氢化物被氧化为S2NaHS + 4NaVO3 + H2O == Na2V4O9 + 4NaOH + 2S偏钒酸钠焦性偏钒酸钠(有还原性)以上两步为脱硫,在脱硫塔中进行。
1合成氨生产常用的原料有哪些?原料:(包括提供H2的原料和燃料)固体原料:焦碳、煤气体原料:天然气、重油、焦炉气等液体原料:石脑油、重油、原油等常用的原料有:焦碳、煤、天然气、重油2合成氨生产分哪几个基本工序?三个基本工艺步骤是什么/(1)造气:即制备含有氢、氮的原料气(2)净化:不论采用何种原料和何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质。
(3)压缩和合成:将合格的氮、氢混合气压压缩到高压,在铁催化剂的存在下合成氨。
3写出天燃气蒸汽转化法生产合成气的主要反应方程式、工艺条件和工艺流程图,说明天然气蒸汽转化法为何要进行二段转化操作?(1)主反应式:CH4 + H2O(g) = CO + 3H2 206.3KJ/mol (1)CO + H2O(g) = CO2 + H2 -41.2KJ/mol (2)副反应式:CH4 = 2H2 + C2CO = CO2 + CCO + H2 = H2O + C(2)工艺条件:压力3~4 MPa;一段转化反应温度800℃;二段转化反应温度1000℃;水碳比S=3~4;空间速度(根据炉型、分段情况、催化剂的不同以及反应的不同时期来确定)(4)书上18页第一段4干法脱硫与湿法脱硫各有甚么优缺点?干法:优点:既能脱除有机硫,又能脱除无机硫;出口气含S<1×10-6(无加氢)、S<2×10-8(有加氢)。
缺点:脱硫剂再生困难,只可用于脱微量硫。
湿法:优点:液态脱硫剂易于输送,可以再生,能回收硫磺,可用于脱除大量无机硫。
5改良ADA法脱硫由哪几个基本反应过程构成?原理:分为四步:①用pH=8.5~9.2的稀碱溶液吸收H2SNa2CO3 + H2S == NaHS + NaHCO3②硫氢化物被氧化为S2NaHS + 4NaVO3 + H2O == Na2V4O9 + 4NaOH + 2S偏钒酸钠焦性偏钒酸钠(有还原性)以上两步为脱硫,在脱硫塔中进行。
③氧化剂(偏钒酸钠)再生Na2V4O9 + 2ADA(O) + 2NaOH +H2O == 4NaVO3 + 2ADA(H)④ADA再生2ADA(H还原态) + O2 == 2ADA(O氧化态) + 2H2O以上两步为再生,在再生塔中进行。
ADA(O):蒽醌二磺酸钠6采用低温交换的目的7写出苯菲尔法脱除CO2吸收和再生主要反应,为什么要加入二乙醇胺?脱碳:K2CO3 + CO2 + H2O == 2KHCO3钾碱再生:2KHCO3 == K2CO3 + H2O + CO2吸收反应(脱碳):KH2AsO3 + CO2 + H2O == KHCO3 + H3AsO3K2CO3 + CO2 + H2O == 2KHCO3 80~90℃钾碱再生:2KHCO3 == K2CO3 + H2O + CO2 105~110因为在K2CO3溶液中加入少量二乙醇胺,可大大加快CO2的吸收速度,降低CO2的分压,同时还可除去原料气中的H2S等酸性组分。
8什么是平衡氨含量,影响平衡氨含量的因素有哪些?有何影响?在一定温度和压强下,所生成的氨的含量,叫做平衡氨含量。
影响因素:(1)温度、压强,(2)理论计算出当xNH3为最大值时r=H2/N2=3;实践证明在高压下,最大氨含量时的r =2.9~3.0(3)惰性气体组分xi(甲烷、氩气):应在高压低温下进行9影响氨合成反应速度的因素有哪些?有何影响?(1)温度:为放热的可逆反应,存在一个最适宜温度(反应速率最快)(Tm<Te)(2)压力:压力P增大,反应速率也增大,所以要求在高压下进行合成。
(3)氢氮比:仍要求H2:N2略低于3。
反应机理为氮的活性吸附所控制。
(4)惰性气体:增加惰性气体组分的含量,总反应速率下降。
(5)空间速度:中压法:20000~30000 h-1;低压法:10000 h-1(轴向冷激式合成塔,可充分利用反应热,降低功耗,延长催化剂的使用寿命)10氨合成的工艺影响因素有哪些?如何选择确定氨合成的工艺条件?因素:压力、温度、空间速度、合成气体的初始组成、惰性气体含量、初始氨含量合成氨的工艺条件:中小型厂(中压法):操作压力30MPa,425~490℃,氢氮比=2.8~2.9,空间速度24000 h-1,出口气氨含量为14~18%。
循环气中惰性气体含量控制在16~20%,氨含量控制在3.2~3.8%。
大型厂(低压法):操作压力15MPa,410~490℃,氢氮比=2.8~2.9,空间速度9000 h-1,出口气氨含量12%,循环气中惰性气体含量控制在8~15%,氨含量控制在2~3.2%。
11氨合成塔的结构有何特点?合成塔由内件和外筒所组成:外筒:承受高压(30MPa),不承受高温(40℃),采取层板包扎式。
内件:承受高温(500℃),不承受高压(1~2MPa),易受氢腐蚀。
内件包括:催化剂筐:催化剂床层+并流套管(冷管)+气体分配盒热交换器:列管式热交换器。
电加热器(在中心管内):催化剂的升温还原,催化剂使用后期活性降低时维持反应的热平衡(即补充热量)并流三套管合成塔内件和单管并流合成塔内件各有何优缺点?并流三套管优点具有操作稳定、适应性强、结构普可靠,缺点结构复杂,冷管与分气盒占据较多的空间,催化剂还原时床层下部受冷管传热的影响升温困难,还原不易彻底。
单管并流合成塔的优点是使结构简化,提高了塔的容积系数。
凯洛格立式轴向四段冷激式氨合成塔的优缺点?第57页最上面1硫酸生产的主要原料有哪些?目前用什么原料生产硫酸的产量较大?(1)硫酸生产用原料:硫铁矿、硫磺、硫酸盐(石膏)、含SO2烟气(有色金属冶炼副产物)及含H2S 废气。
(2)石油、天然气开采中的副产物硫磺。
2写出硫铁矿的焙烧反应,提高焙烧反应的速率的途径有哪些?4FeS2 + 11O2 == 8SO2+ 2Fe2O3 , △H=-3411KJ/mol途径:(1)提高反应温度:850~950℃,>950℃烧渣熔融结块,熔化在矿石表面,阻滞了氧气的渗透。
(2)减小矿石粒度:粒度小较好,但过细时(如硫精矿,0.07~0.15mm,为浮选法得到),易于粘连,限制了气流速度,炉气的含尘量也增大。
(3)增加空气与矿粒的相对运动:可采取流化状态反应以减小气体的扩散阻力,故使用沸腾炉燃烧硫铁矿。
(4)提高入炉空气含氧量:可增大氧气的扩散速度,但不经济,一般不允许炉气中O2过剩系数过大。
3沸腾焙烧炉由哪几部分构成,其作用是什么?沸腾炉的结构:风室、空气分布板、沸腾层、沸腾层上部燃烧空间。
作用:扩大部分的作用:细粒大部分顺炉壁流回到沸腾区风帽的作用:高速气流吹松炉料而不至于沉积到气体分布板上。
4二氧化硫炉气净化的目的是什么?除去这些杂质的方法是什么?目的:会带入转化系统会降低二氧化硫的转化率,腐蚀系统的设备和管道。
因此,必须对炉气进行进一步的净化。
方法:酸雾的清除5试述文泡冷电酸洗净化流程?炉气→文氏管→复挡除沫器→泡沫塔→复挡除沫器→冷凝器或增湿塔→电除雾器→净化器→去干燥工序写出二氧化硫催化氧化的反应,此反应有什么特点?如何提高二氧化硫的平衡转化率?SO2 + ½O2 == SO3 ,△rHm(25℃)=-98.89kJ/mol为放热的可逆反应T降低,P升高,都能使平衡转化率增大6何谓最适宜温度,它与气体组成有什么关系?最适宜温度是:当达到一定温度时,反应最完全,产率最高T升高,正反应速率增大,逆反应速率也增大,但平衡向左移动,所以必然会有一个最适宜的反应温度Tm,在此温度下反应,总反应速率最大。
7写出二氧化硫催化氧化反应,此反应有什么特点?如何提高二氧化硫平衡转化率?SO2 + ½ O2 == SO3 ,△rHm(25℃)=-98.89kJ/mol特点:为放热的可逆反应,T降低,P升高,都能使平衡转化率增大,8转化过程的工艺条件是如何确定的?(1)最适宜反应温度:尽量使反应按照最适宜温度线进行,采取的方法:在催化剂活性温度范围内操作;尽可能接近最适宜温度进行反应;采取分段操作。
2)SO2的起始浓度根据充分利用原料、减少尾气污染和生产总成本最低的原则,要求:含煤硫铁矿为原料的一转一吸流程中,炉气中SO2控制在<7%;硫磺制酸时,SO2控制在8~9%;硫铁矿为原料的二转二吸流程中SO2控制在9~10%(3)最终转化率根据最低生产成本(降低催化剂用量)和提高S利用率及减轻污染(高转化率)的原则:对于中间换热、一次转化的流程(一转一吸流程)选取最终转化率为97.5~98%;对于两转两吸流程的最终转化率可达99.5%。
9转化器为什么分段操作,中间冷却有哪几种方式,其优缺点是什么?冷却方式:间接换热式和冷激式两种优缺点①反应速度快,最终转化率高(最后一段转化时O2高);②可采取高SO2炉气(最后一段转化时先除去了SO3);③减轻尾气污染(尾气中SO2达到排放标准);④换热面积大(增加的中间吸收再去转化时又需加热);⑤动力消耗大(气流阻力大)。
10硫酸生产为何选择98.3%的硫酸来吸收三氧化硫?当吸收酸<98.3%时,吸收慢,且易生成酸雾;当吸收酸>98.3%时,P(SO3)较大,吸收率低;当吸收酸=98.3%时,P(H2O)最低,形成的酸雾最少。
所以98.3%浓硫酸为最佳吸收剂。
1画出隔膜法氯碱生产的基本工艺过程示意图?第98页图2什么是理论分解电压?什么是槽电压?槽电压由哪几部分构成?理论分解电压:为了使物质能在两电极上连续不断析出时外界所加的最小电压,其理论计算值称理论分解电压,它等于阳极与阴极电极电位之差。
槽电压:电解槽两电极上所加的电压称为槽电压。
槽电压包括:理论分解电压E、过电位E0、电流通过电解液的电压降△EL和通过电极、导线、接点等的压降△ER3什么是电压效率,什么事电流效率?它们与电能效率的关系是什么?电压效率:ηE:ηE = E (理分) /E(槽) ,隔膜法ηE = 60%电流效率ηI :隔膜法ηI = 96%关系:电能效率η:η = ηE×ηI ,隔膜法η < 60%4为什么离子膜法电解的阴极液中NaCl含量低,根据离子膜选择透过性示意图分析。
5导致离子膜性能下降的主要因素有哪些?离子膜长期处于NaOH低浓度下运行,还会使膜膨胀、严重起泡、分离直至永久性破坏。
6离子膜电解槽的主要阴阳极材料有哪些?阳极为金属阳极(DSA),阴极为铁板、不锈钢板、镍板等。
7试论述电解工艺条件的选择?(1)饱和食盐水质量:影响到离子膜的使用寿命、槽电压及电流效率,如含Ca2+ 、Mg2+ ,通过膜孔时易堵塞,所以控制c(Ca2+) +c( Mg2+ ) <2×10-8mol/L 。