2003年全国初中数学竞赛天津赛区
- 格式:doc
- 大小:338.00 KB
- 文档页数:12
2003年全国初中数学竞赛
嘉兴市评奖结果公告
2003年全国初中数学竞赛于2003年4月6日举行。
嘉兴市由嘉兴市教育局教研室、嘉兴市教育学会中学数学分会、嘉兴市数学会联合组织,共有6270名学生参加了本次竞赛,经成绩评定,确定嘉兴市团体优胜奖15名,个人一等奖68名、二等奖124名、三等奖127名。
现将结果公布如下:
团体优胜:
海盐县武原中学平湖市东湖中学
嘉兴三中求是实验中学
邵逸夫中学秀洲现代实验学校
嘉善泗洲中学桐乡六中
嘉兴市洪波中学嘉善四中
嘉兴秀中分校嘉善一中
海宁一中海盐县元通中学
海盐县实验中学
个人获奖:
一等奖
二等奖
嘉兴市教育局教研室嘉兴市教育学会中学数学分会
嘉兴市数学会
2003年5月8日。
5 EC 1 2 18 1 2 18第 4 期25 2003年全国初中数学竞赛天津赛区初赛一、选择题(每小题5 分,共30 分)(2003 - 03 - 23)AD 将△ABC 分成2 个等腰三角形. 则满足上述条件1. 化简2 4 + 2 3 - 21 - 12 3 为( ) .(A) 5 - 4 3 (B) 4 3 - 1 (C) 5 (D) 12.在凸八边形的所有内角中, 钝角至少有( ) 个.(A) 3 (B) 5 (C) 7 (D) 83.如图1 ,用3 个边长为1 的正方形组成一个对称图形,则能将其完全覆盖的圆的的不同形状(相似的认为是同一形状) 的△ABC 最多有个.三、解答题(每小题20 分,共60 分)12.有18 支足球队进行单循环赛,每个参赛队同其他各队都进行一场比赛. 假设比赛的结果没有平局,如果用a i和b i分别表示第i ( i = 1 ,2 ,3 , , 18) 支球队在整个赛程中胜与负的局数,求证:最小半径为( ) . a2+ a2+ + a2= b2+ b2+ + b2.(A) 2 (B) 5213.如图2 , PA 、PB 与⊙O 切于A 、B(C) 54 (D)5 17 图116两点, PC 是任意一条割线,且交⊙O于4.已知A 、B 为平面上的 2 个定点,且AB =5. 若点A 、B 到直线l 的距离分别等于2 、3 ,则满足条件的直线l 共有( ) 条.(A) 2 (B) 3 (C) 4 (D) 无数5.已知x 、y 、z 为3 个非负实数,且满足3 x + 2 y + z = 5 , x + y - z = 2. 若s = 2 x + y - z , 则s 的最大值与最小值的和为( ) .(A) 5 (B) 23 (C) 27 (D) 354 4 46. 使得2 n ( n + 1) ( n + 2) ( n + 3) + 12 可表示为2 个正整数平方和的自然数n ( ) .(A)不存在(B) 有1 个(C) 有2 个(D) 有无数个二、填空题(每小题6 分,共30 分)7.某编辑用0~9 这10 个数字给一本书的各页标上页码. 若共写了636 个数字, 则该书有点E、C , 交AB 于点AC2AD 图2D. 求证:BC2=BD.14. 已知函数y = ( a + 2) x2- 2 ( a2- 1) x + 1 ,其中自变量x 为正整数, a 也是正整数. 求x 为何值时,函数值最小.参考答案一、1. (C) .2. (B) .因为一个凸多边形的外角至多有 3 个钝角,故其内角中最多有 3 个锐角,所以凸八边形的内角中至少有 5 个钝角.3. (D) .如图 3 得a2+ 1 = r2,页.8.设△ABC 的面积是1 , D 是边BC 上一点,且(2 - a) 2 +122= r2.BD= 1. 若在边AC 上取一点E ,使四边形ABDE 的解得a =13, r =5 17. 图3DC 2 16 16面积为4,则A E的值为.9.已知二次函数y = ax2+ bx + c ,一次函数y =k24. (B) .以点A 、B 为圆心,半径分别为2 、3 的两圆的公切线的条数,即为所求.5. (A) .k ( x - 1) - 4 . 若它们的图像对于任意的实数k 都只有一个公共点,则二次函数的解析式为. x = s - 2 ≥0 ,10.已知α、β是方程x2α4 + 3β的值为. - x - 1 = 0 的两个根. 则3 x + 2 y + z = 5 ,由x + y - z = 2 ,2 x + y - z = s得y = 5 -4s31≥0 ,11.△ABC 中,有一内角为36°,过顶点A 的直线z = 1 - 3 s ≥0.26 中等数学。
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
【数学竞赛】2003年全国初中数学联赛试卷第一试(4月13日上午8:30—9:30)一、选择题(本题满分42分,每小题7分)1.A .5-B .1C .5D .1[答]( )2.在凸10边形的所有内角中,锐角的个数最多是A .0B .1C .3D .5[答]( )3.若函数()0y kx k =>与函数1y x=的图象相交于A ,C 两点,AB 垂直x 轴于B ,则△ABC 的面积为 A .1 B .2 C .k D .2k[答]( )4.满足等式2003的正整数对()x y ,的个数是A .1B .2C .3D .4[答]( )5.设△ABC 的面积为1,D 是边AB 上一点,且13AD AB =.若在边AC 上取一点E ,使四边形DECB 的面积为34,则CE EA的值为 A .12 B .13 C .14 D .15[答]( )6.如图,在□ABCD 中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切.若AB =4,BE =5,则DE 的长为A .3B .4C .154D .165[答]( ) D CA B E二、填空题(本题满分28分,每小题7分)1.抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C .若△ABC 是直角三角形,则ac =__________.2.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m =____________. 3.如图,'AA ,'BB 分别是∠EAB ,∠DBC 的平分线.若''AA BB AB ==,则∠BAC 的度数为_____________.4.已知正整数a ,b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a ,b 中较大的数是_________.2003年全国初中数学联合竞赛试卷第二试(A )(4月13日上午10:00—11:30)考生注意:本试三大题,第一题20分,第二、三题各25分,全卷满分70分.一、(本题满分20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数.二、(本题满分25分)。
G F EDCB AOD CBA2003年“TRULY ®信利杯”全国初中数学联赛天津赛区复赛试卷1.若4x -3y -6z = 0,x +2y -7z = 0 (xyz≠0),则代数式222222103225z y x z y x ---+的值等于 ( ). (A)12-(B)192-(C)15- (D)13-2.在本埠投寄平信,每封信质量不超过20g时付邮费0.80元,超过20g 而不超过40g 时付邮费1.60元,依次类推,每增加20g 需增加邮费0.80元(信的质量在100g 以内). 如果某人所寄一封信的质量为72.5g ,那么他应付邮费 ( ).(A)2.4元 (B)2.8元(C) 3元 (D) 3.2元 3.如右图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G的值等于( ).(A) 360° (B) 450° (C) 540° (D) 720° 4.四条线段的长分别为9,5,x ,1(其中x 为正实数),用它们拼成两个直角三角形,且AB 与CD 是其中的两条线段(如右图),则x可取值的个数为( ).(A) 2个 (B) 3个 (C) 4个 (D) 6个5.某校九年级两个毕业班的学生和教师共100人一起在台阶上拍毕业照留 念,摄影师要将其排列成前多后少的梯形队阵(排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空当处,那么,满足上述要求的排法的方案有( ).(A) 1种 (B) 2种(C) 4种 (D) 0种6.已知31+=x ,那么2111242x x x +-+--的值等于 . 7.若实数x ,y ,z 满足41=+yx ,11=+z y ,371=+x z ,则xyz 的值为 .8.观察下列图形:① ② ③ ④根据图①、②、③的规律,图④中三角形的个数为 . 9. 如右图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成45º,∠A = 60º,CD = 4m ,BC =()2264-m ,则电线杆AB 的长为_______m . 10.已知二次函数c bx ax y ++=2(其中a 是正整数)的图象经过点A (-1,4)与点B (2,1),并且与x 轴有两个不同的交点,则 b + c 的最大值为 .三、解答题(本大题共4题,每小题15分,满分60分)如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .问EP 与PD 是否相等?证明你的结论.某人租用一辆汽车由A 城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为 80千米/小时,而汽车每行驶1千米需要的平均费用为1.2元.试指出此人从A 城出发到B 城的最短路线(要有推理过程),并求出所需费用最少为多少元?10111859712131761514FGO HBE DC APE DCB A OABCD已知:△ABC 中,∠ACB =90°.(1) 如图所示,当点D 在斜边AB 上(不含端点)时,求证:ABBDAD BC BD CD -=-222;(2)当点D 与点A 重合时,第(1)小题中的等式是否成立?请说明理由; (3)当点D 在BA 的延长线上时,第(1)小题中的等式是否成立?请说明理由.已知实数a ,b ,c 满足:a +b +c =2,abc =4. (1)求a ,b ,c 中的最大者的最小值; (2)求a b c ++的最小值.答案:1.答案:D .由⎩⎨⎧=-+=--,072,0634z y x z y x 解得⎩⎨⎧==.2,3z y z x 代入,得原式=1310121818451043924295222222-=---+=-⨯-⨯-⨯+⨯z z z z z z . 2. 答案:D .因为20×3<72.5<20×4,所以根据题意,可知需付邮费0.8×4=3.2(元). 3. 答案:C .如图所示,∠B +∠BMN +∠E +∠G =360°, ∠FNM +∠F +∠A +∠C =360°,而∠BMN +∠FNM =∠D +180°,所以∠A +∠B +∠C +∠D +∠E +∠F +∠G =540°. 4. 答案:D .显然AB 是四条线段中最长的,故AB =9或AB =x . (1)若AB =9,当CD =x 时,222)51(9++=x ,53=x ;当CD =5时,222)1(59++=x ,1142-=x ; 当CD =1时,222)5(19++=x ,554-=x .(2)若AB =x ,当CD =9时,222)51(9++=x ,133=x ;当CD =5时,222)91(5++=x ,55=x ; 当CD =1时,222)95(1++=x ,197=x .5. 答案:B .设最后一排有k 个人,共有n 排,那么从后往前各排的人数分别为k ,k +1,k +2,…,k +(n -1),由题意可知1002)1(=-+n n kn ,即()[]20012=-+n k n .因为k ,n 都是正整数,且n ≥3,所以n <2k +(n -1),且n 与2k +(n -1)的奇偶性不同. 将200分解质因数,可知n =5或n =8. 当n =5时,k =18;当n =8时,k =9. 共有两种不同方案.6. 答案:23-. 4341442141212222--=-+--=---++x x x x x x将31+=x代入,可得其值为23-. 7. 答案:1.因为34371137137111114--+=---+=-+=-+=+=x x x xx x z z x z x y x , 所以37)34()34(4-+-=-x x x x ,091242=+-x x ,0)32(2=-x ,故23=x .从而 353237137=-=-=x z , 5253111=-=-=z y . 于是1355223=⨯⨯=xyz .8. 答案:161.根据图中①、②、③的规律,可知图④中三角形的个数为1+4+3×4+432⨯+433⨯=1+4+12+36+108=161(个).9. 答案:26.如图,延长AD 交地面于E ,过D 作DF ⊥CE 于F . 因为∠DCF =45°,∠A =60°,CD =4(m ), 所以CF =DF =22(m ),EF =DF tan60°=62(m ). 因为3330tan == BE AB , 所以2633)22642262(33=⨯-++=⨯=BE AB (m ). 10. 答案:-4.G FE D CB ANM由于二次函数的图象过点A (-1,4),点B (2,1),所以⎩⎨⎧=++=+-,124,4c b a c b a解得⎩⎨⎧-=--=.23,1a c a b 因为二次函数图象与x 轴有两个不同的交点,所以42>-=∆ac b ,0)23(4)1(2>----a a a ,即0)1)(19(>--a a , 由于a 是正整数,故1>a ,所以a ≥2.又因为b +c =-3a +2≤-4,且当a =2,b =-3,c =-1时,满足题意,故b +c 的最大值为-4.11. 解:DP =PE . 证明如下:因为AB 是⊙O 的直径,BC 是切线,所以AB ⊥BC . 由Rt △AEP ∽Rt △ABC ,得ABAEBC EP = . ① ……(6分) 又AD ∥OC ,所以∠DAE=∠COB ,于是 Rt △AED ∽Rt △OBC . 故ABAEAB AE OB AE BC ED 221===. ② ……(12分) 由①,②得 ED =2EP . 所以 DP =PE . ……(15分) 12. 解:从A 城出发到达B 城的路线分成如下两类: (1) 从A 城出发到达B 城,经过O 城.因为从A 城到O 城所需最短时间为26小时,从O 城到B 城所需最短时间为22小时. 所以,此类路线所需 最短时间为26+22=48(小时). ……(5分)(2) 从A 城出发到达B 城,不经过O 城. 这时从A 城到达B 城,必定经过C ,D ,E 城或F ,G ,H 城,所需时间至少为49小时. ……(10分)综上,从A 城到达B 城所需的最短时间为48 小时,所走的路线为A →F →O →E →B . ……(12分)所需的费用最少为80×48×1.2=4608(元). ……(14分)答:此人从A 城到B 城最短路线是A →F →O →E →B ,所需的费用最少为4608元. ……(15分)13. 解:(1)作DE ⊥BC ,垂足为E . 由勾股定理, 得.)()()(22222222BC BE CE BE CE DE BE DE CE BD CD -=-=+-+=-所以,BC BEBC CE BC BE CE BCBD CD -=-=-222. 因为DE ∥AC ,所以ABBD BC BE AB AD BC CE ==,.故AB BDAD AB BD AB AD BCBD CD -=-=-222. ……(10分) (2)当点D 与点A 重合时,第(1)小题中的等式仍然成立.此时有AD,BD=AB.所以122222222-=-=-=-BCBCBCABACBCBDCD,1-=-=ABAB.从而第(1)小题中的等式成立.……(13分)(3)当点D在BA的延长线上时,第(1)小题中的等式不成立.作DE⊥BC,交BC的延长线于点E,则222222CD BD CE BEBC BC--=21,CE BE CEBC BC+=-=--而1-=-=-ABABABBDAD,所以ABBDADBCBDCD-≠-222.……(15分)〖说明〗第(3)小题只要回答等式不成立即可(不成立的理由表述不甚清者不扣分).14. 解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且2b c a+=-,abc4=.于是b,c是一元二次方程04)2(2=+--axax的两实根,aa44)2(2⨯--=∆≥0,164423-+-aaa≥0,)4)(4(2-+aa≥0.所以a≥4.……(8分)又当a=4,b=c=-1时,满足题意. 故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为一正二负,设a>0,b<0,c<0,则22)2(-=--=--=++aaacbacba,由(1)知a≥4,故2a -2≥6,当a=4,b=c=-1时,满足题设条件且使得不等式等号成立.故cba++的最小值为AB DD。
2003年全国初中数学联合竞赛决赛一、选择题(每小题7分,共42分) 1. 221217223-+-=_________.A 5-42 B42-1 C5 D12. 在凸10边形的所有内角中,锐角的个数最多是_________个。
A0 B1 C3 D53.若函数y =kx(k >0)与函数y =x -1的图象相交于A 、C 两点,AB 垂直x 轴于B ,则△ABC 的面积为_________.A1 B2 Ck Dk 24.满足等式x 2003xy 2003y 2003x y x y +--+=2003的正整数对的个数是 ___A1 B2 C3 D45、设△ABC 的面积为1,D 是边AB 上一点,且AD ∶AB =1∶3。
若在边AC 上取一点E ,使四边形DECB 的面积为43,则EAEC的值为__。
A 21B 31C 41 D 516.如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切,若AB =4,BE =5,则ED 的长为__。
A3 B4 C 415 D 516BCD AE二、填空题(每小题7分,共28分)1.抛物线y =ax +bx +c 与x 轴交于A ,B 两点,与y 轴交于点C 。
若△ABC 是直角三角形,则ac =_________.2.设m 是整数,且方程3x 2+mx -2=0的两根都大于-59而小于73,则m=_______。
3.如图,AA 1、BB 1分别是∠EAB 、∠DBC 的平分线,若AA 1=BB 1=AB ,则∠BAC 的度数为_________.4.已知正整数a 、b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a 、b 中较大的数是_________.三.(本题满分20分)在△ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE =DF ;过E ,F 分别作CA 、CB 的垂线,相交于P ,设线段PA 、PB 的中点分别为M 、N 。