等差数列的性质应用:
例、已知一个等差数列的总项数为奇数, 且奇数项之和为77,偶数项之和为 66,求中间项及总项数。
解:由 S奇 S偶 中间项
得中间项为11 又由 S奇 S偶 143 得 n 13
等差数列{an}前n项和的性质的应用
例6.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n 1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 13
A.63 B.45 C.36 D.27
例3.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
等差数列的性质应用:
例4、已知等差数列an 的前10项之和
为140,其中奇数项之和为125 , 求第6项。
前n项的和分别为Sn和Tn,则
an bn
S2n1 T2 n 1
等差数列的性质应用:
例1、已知一个等差数列前n项和为25, 前2n项的和为100,求前3n项和。
3.等差数列{an}前n项和的性质的应用 例2.设等差数列{an}的前n项和为Sn,若
S3=9,S6=36,则a7+a8+a9=( B)