2.3等差数列的前n项和第一课时教案
- 格式:doc
- 大小:146.50 KB
- 文档页数:3
《等差数列前n项和公式》微课教案----天津市木斋中学王珏教材选自:普通高中课程标准试验教材数学(人教A版)《必修5》“§2.3等差数列前n项和”第一课时。
一、教学目标设计《课程标准》指出本节课的学习目标是:探索并掌握等差数列前n项和公式;能在具体的问题情景中,发现数列的等差关系并能用相关知识解决相应的问题。
考虑到学生的接受能力和课容量,本节课只要求学生探索并掌握等差数列前n项和公式,并会对公式进行简单的应用。
故结合《课标》的要求,我将本节微课的教学目标确定为:知识与技能:探索并掌握等差数列前n项和公式,会用公式解决一些简单的问题;方法与过程:通过对等差数列前n项和公式的探索,体会“从特殊到一般”的数学研究方法和数形结合的数学思想方法,学会观察、归纳、反思;情感、态度与价值观:让学生亲身经历知识的建构过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重、难点:教学重点:能从具体实例中探索并掌握等差数列前n项和公式,并用其解决一些简单的问题。
教学难点:等差数列前n项和公式推导思路的获得。
三、课堂结构设计新课程提倡在教学过程中,学生是一个积极的探究者,教师的作用是创设问题情境,帮助学生在积极参与中遇水架桥、逢山开路。
因此,本节课设计了如下的课堂结构。
知三求二、渗透思想分析实例,感悟生活演练反馈、提升能力总结反思,深化认识布置作业,任务延伸四、教学过程设计结合本节课的特点,我主要安排了以下六个环节:(一)问题呈现阶段1、创设情境,提出问题——展示图片(印度的泰姬陵)泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰汗为纪念其爱妃所建,历时22年,它宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见上右图),奢靡之程度,可见一斑。
欣赏完如此美的故事及图案,请问:你知道这个图案一共花了多少宝石吗?设计意图:源于历史,富有人文气息;图中算数,激发学生学习兴趣和探究欲望;承上启下,探讨高斯算法.2、自主探究,合作交流此时,教师先不参与,给学生一定的思考时间和思考空间,让学生自主活动。
附件 1-4
第二届湘西州中小学青年教师教学竞赛
教学设计表
学段:高中科目:数学编号:(组委会填写)
设计意图:培养学生观察、比较、分析、归纳等能力.
问题4、从方程的角度来看,可以解决什么问题?
学情预设:知三求一的问题
设计意图:培养学生用方程(组)思想分析问题、解决问题的能力。
问题5、如何更好的记忆公式?跟以前学过的什么公式类似呢?
引导学生回忆梯形的面积公式,并作出以下的分析
设计意图:培养学生类比、反思等思维能力.
设计意图:这些问题串的设计,是为了达到:数学公式课的教学,不仅要知道公式的来龙去脉,还要知道公式是什么,记住公式且挖掘公式的内涵与外延.更重要的是公式有何用,怎样用?让学生对公式课的学习有个系统、全面的认识,形成一套科学而有效的探究公式的方法.力求体现“授之于鱼,不如授之于鱼渔”的教学价值.
(五)剖析例题,理解巩固
例1、众所周知,中国的著名运动员姚明在篮球领域中取得了巨大的成就,他是整个中国的骄傲,甚至是整个亚洲的骄傲.但是同学们了解姚明刚去NBA时的辛酸吗?初到NBA,姚明为了更快的适应NBA 的高强度对抗,给自己指定了为期10天的投篮训练计划,从第一天到第十天的投篮个数依次如下表:
600 650 700 750 800 850 900 950 1000 1050 请问:姚明这十天一共投了几个篮?
例2、求等差数列2、4、6、8、…、142的和.
设计意图:1、从数学知识角度出发:学生要达到会选用公式从。
等差数列的前n项和(第一课时)教学设计
【教学目标】
一、知识与技能
1.掌握等差数列前n项和公式;
2.体会等差数列前n项和公式的推导过程;
3.会简单运用等差数列前n项和公式。
二、过程与方法
1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;
2. 通过公式的运用体会方程的思想。
三、情感态度与价值观
结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】
等差数列前n项和公式的推导和应用。
【教学难点】
在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】
本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归
纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒
体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】
多媒体软件,电脑
【教学过程】
一、明确数列前n项和的定义,确定本节课中心任务:
1。
课题:2.2.3等差数列的前n项和授课教师:南京市金陵中学王友伟教材:苏教版必修5一.教学目标1.经历探索等差数列前n项和公式的过程,体会化归、分类讨论等数学思想,掌握倒序相加求和法,积累数学活动的经验;2.理解等差数列前n项和公式及不同形式,能够灵活选用恰当的形式解决问题;二.教学重难点重点:等差数列前n项和公式的推导难点:从图形直观的角度分析等差数列前n项和的公式.三.教学方法与教学手段启发式教学,探究式学习,多媒体辅助教学.四.教学过程1.创设情境,引入课题前面我们学习了数列,研究了一种特殊的数列——等差数列,与学生一起回顾等差数列中的相关知识.-a n=d(n∈N) (a1是首项,d是公差,n是项数) 等差数列的定义:a n+1等差数列的通项公式:a n=a1+(n-1)d(n∈N*,n≥2)[设计意图]通过复习,帮助学生梳理知识框架,教会学生掌握研究数学的一般方法,同时为接下来应用基本量分析具体的数列做铺垫.(播放阅兵视频)我们能否从数列的视角重新看我们的阅兵队列?[设计意图]紧贴时事与生活,在激发学生爱国热情的同时,让学生感受到数学来源于生活,教会学生用数学的眼光来重新观察世界,思考问题.给出视频中的几个队列变化的画面,抽象成点阵如下:以第三幅图中的蓝色区域为例,进行研究.问题1:对于这个方阵,你能用数列的观点发现问题、提出问题吗?[设计意图]让学生尝试着去寻找队列的人数与数列的关系,内化等差数列中的首项、项数、公差等概念,引导学生学会将实际问题中的数量用抽象的数学符号进行描述,进一步培养学生观察的能力,和从实际问题中抽象出数学知识的能力.同时,让学生自行提出问题进行研究,感受到研究等差数列的前n项和并不是“心血来潮”,而是有据可依.2.探索质询,追根溯源(1)构建研究方法问题2:如何求这个区域的总人数?(尝试用多种方法)(学生分组讨论,5分钟后小组汇报)S21=3+4+…+22+23(预设方案1)从数的角度:3+23=4+22+…=12+143+232×10+13=273(预设方案2)从数的角度:3+22=4+21=…12+133+222×10+23=273(预设方案3)从数的角度:S 21=3+4+…+22+23S 21=23+22+…+4+32 S 21=(3+23)+(4+22)+…+(22+4)+(23+3)S 21=3+232×21 [设计意图]因为很多学生在小学的奥数中已经“学习”了等差数列的前n 项和的公式,但是对公式背后的意义并不是非常理解,尤其是对配对的思想更是一知半解,所以这个问题中设定了奇数项的等差数列求和,引导学生发现配对时可能出现不是整数对的情形,也为接下来的奇偶项的讨论和“倒序相加法”做好铺垫.(预设方案4)几何角度:切掉左边的两列S 21=2×21+1+2+…+21=2×21+1+212×21(预设方案5)几何角度:切掉左边的三列S 21=3×21+1+2+…+20=3×21+ (1+20)×10[设计意图]左边设置的常数列,让学生感受到相同的数相加可以转化成乘法,呼应了前面“配对”的思想.在学生已经拥有了“补”的方法后再抛出这一问题,比较自然的引出了“割”这样的方法,培养学生学会从几何角度给出不同的解释,也为等差数列前n 项和的第二种形式的推导做铺垫.[设计意图]这一环节的设计,让学生充分感受到可以从数和形两个角度对一个等差数列进行求和,经历自行动手推导的过程,感受配对思想在计算中的带来的便捷,同时感受到可以使用“割”“补”方法对其进行分析计算,为接下来探求一般的等差数列{a n }的前n 项和奠定基础.(2)自主探究 汇报交流问题3:如何推导出等差数列{a n }的前n 项之和S n 的公式?追问:对于一个数列,已知哪些量可以求和?①已知a 1,a n ,n ;②已知a 1,d ,n .追问2:已知a 1,a n ,n ,如何推出?(小组讨论,5分钟后小组汇报)(预设方案1)S n =a 1+a 2 +…+a n -1+a n ,①S n =a n +a n -1+…+ a 2 +a 1,②①+②相加得: 2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1)=n (a 1+a n ),所以S n =n (a 1+a n )2.(预设方案2)S n =a 1+a 2+…+a n -1+a n(1)n 为偶数时,S n =(a 1+a n )+( a 2+a n -1)+…=( a 1+a n )n 2=n (a 1+a n )2 (2)n 为奇数时,S n =(a 1+a n )+( a 2+a n -1)+ …+an +12=( a 1+a n )n -12+(a 1+a n )2 =n (a 1+a n )2[阶段总结]我们运用倒序相加法得到了等差数列前n 项和的公式,其中的配对思想就是数学中的化归思想,将不同的数转化成相同的数相加,从而可以将加法转化为成为进行计算.[设计意图]研究完具体数列的求和后,让学生将掌握的方法迁移到一般的等差数列{a n }中,继续内化“倒序相加法”,并用最后两个追问让学生真正理解为何要配对,为何能配对(要证明). 追问4:已知a 1,d ,n ,如何推出?(预设方案3)S n =a 1+(a 1+d )+(a 1+2d )+ …+[a 1+(n -1)d ]=na 1+[1+2+…+(n -1)]d=na 1+n (n -1)2d追问:能否找到几何解释所对应的图形[阶段总结]我们运用“切割法”(分组求和)的方法得到了等差数列前n 项和的公式的另外一种形式,其中d +2d +3d +……+(n -1)d 还是化归成了1+2+……+(n -1)的问题.[设计意图]从“割”的角度给出了公式的形象化解释,也让学生感受到等差数列的求和问题其实就可以划归为“1+2+……+n ”的问题,体现出了化归的思想.追问:两个公式等价吗?[设计意图]通过这一问题,让学生观察两个公式的特点,进而发现两公式的区别,即公式①中出现a n ,而公式②中出现d ,为后面选择恰当的公式解决问题做好铺垫.同时,也让学生感受到公式①中的a n 是由a 1和d 决定的,体会a 1和d 两个基本量的地位与作用.追问:对比几种推导S n 的方法,你觉得哪种方法简洁?[设计意图]让学生重新回顾几种推导方法,经过对比发现,前几种配对的方法中,最简约的是倒序相加法,而已知a 1,d ,n 推导S n 的方法其实归根结底就是1+2+…+n 的问题,而1+2+…+n 问题最简约的解法还是倒序相加法.经过这样的分析,让学生明白,推导公式其实还是为了追求简约,追求简约是数学研究的一大基本原则.3.新知运用,巩固深化例1 在等差数列{a n }中,前n 项之和为S n .(1)已知a 1=2,a 30=90,求S 30;(2)已知a1=5,d=13,求S12.[设计意图]通过例题,让学生巩固公式,会根据题设条件合理地选用公式.通过追问,让学生体会n,a1,d,a n,S n这五个量,可以知三求二,从而加深学生对公式的理解与运用.同时,对于公式的选择,其原则还是追求简约.例2 求出下列各区域的总人数.重点讲最后的黑色区域(从不同的角度看不同的等差数列)[设计意图]让学生在具体的实例中使用刚才推导出的等差数列求和,熟悉公式,学以致用.4.概括知识,总结方法回顾与反思:这节课你学到了哪些知识,蕴含了哪些思想?5.分层作业,因材施教(1)巩固运用:P47 习题2.2(2):1,2,3,4,5.(2)拓展思考:等差数列的通项公式a n可以看成关于n的函数,你能从函数的角度研究S n吗?[设计意图]分层布置作业,“巩固运用”面向全体学生,旨在掌握等差数列前n项和公式的应用.“拓展思考”为学生提供运用函数思想研究S n的机会.五.教学设计说明等差数列的前n项和的研究是在学生已经学习了等差数列的概念、通项公式等知识的基础之上,对等差数列这一特殊数列更深层次的探索和研究.任何一章知识的学习都应符合学生的认知规律,尊重学生已有的知识储备,尤其对于等差数列的前n项和的公式而言,很多学生在小学就已经从课外得知了这一公式,所以在进行知识呈现时,教师不可完全照本宣科,而需要从全新的角度切入,引导学生重新审视原有知识架构中“冰冷”的公式,带领学生揭开公式的“神秘面纱”,剖析公式推导过程中每一步所暗含的数学思想,这样才能抓住学生,让学生参与到课堂中来.本节课从时事——今年是中华人民共和国成立70周年出发,从学生们喜爱的阅兵式入手,让学生探索队列人数与数列间的关系,感受到数学来源于生活,引导学生学会用数学的眼光看世界.整节课的设计将几何中的“割补”法作为背景,结合多媒体的使用,分别从对数的角度“配对”和从形的角度“割补”进行交叉对比,让学生学会将已有的知识和研究手段迁移到新知识的学习中,让学生经历了从数到形,再从形到数的渐进过程,找到前n项和公式的两种形式的几何支撑,加深对于抽象公式的形象化理解,在获得新知的过程中体会了数形结合、化归、分类讨论等基本思想方法.例题的设置呼应了公式的两种形式,让学生在解题时体会如何选择合适的公式,也让学生在选择中体会两种公式间的联系,而公式的选用也是为了追求简约。
§2.3 等差数列的前
n 项和 授课类型:新授课
(第1课时) 一、教学目标
知识与技能:掌握等差数列前n 项和公式;会用等差数列的前n 项和公式解决问题。
过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律;通过公式推导的过程教学,扩展学生思维。
情感态度与价值观:通过公式的推导过程,使学生体会数学中的对称美,促进学生的逻辑思维。
二、教学重点
等差数列n 项和公式的理解、推导及应用
三、教学难点
灵活应用等差数列前n 项公式解决一些简单的有关问题
四、教学过程
1、课题导入
“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家
出道题目:
1+2+…100=?”
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:
“1+2+3+…+100=5050。
”
教师问:“你是如何算出答案的?
高斯回答说:因为1+100=101;
2+99=101;…50+51=101,所以
101×50=5050”
这个故事告诉我们:
(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规
律性的东西。
(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。
2、讲授新课
(1)等差数列的前n 项和公式1:2
)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①
1221a a a a a S n n n n +++++=-- ②
①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--
∵ =+=+=+--23121n n n a a a a a a
∴)(21n n a a n S += 由此得:2
)(1n n a a n S +=
从而我们可以验证高斯十岁时计算上述问题的正确性(2)等差数列的前n 项和公式2:2
)1(1d n n na S n -+= 用上述公式要求n S 必须具备三个条件:n a a n ,,1
但d n a a n )1(1-+= 代入公式1即得: 2)1(1d n n na S n -+
= 此公式要求n S 必须已知三个条件:d a n ,,1
3、例题讲解:
课本P43的例1
例2:已知一个等差数列{}n a 的前10项和是310,前20项和是1220,由这些条件能确定这个数列的前n 项和公式吗?
解:由题意知:1020310,1220S S == 将它们代入公式1(1)2
n n n S na d -=+ 得到方程组, 111045310201901220
a d a d +=⎧⎨+=⎩ 解这个方程组得到:14,6a d ==
所以 23n S n n =+
例3:已知数列{}n a 的前n 项和为212
n S n n =+,求这个数列的通项公式.这个数列是等差数列吗?如果是,写出它的首项和公差 解:根据12n n S a a a =+++与1121n n S a a a --=+++ 可知,当1n >时,221111(1)(1)2222n n n a S S n n n n n -=-=+
----=- 当1n =时,1132
a S ==, 所以{}n a 的通项公式为122n a n =-,首项为32,公差为2 由例3得与n a 之间的关系:
由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S ,
即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n
.
4、课堂练习
课本P45练习1、2、3
练习①:根据题中条件,求相应的等差数列的前n 项和表达式
184,18,8a a n =-=-=
解:由于184,18a a =-=-, 所以8127
a a d -==- 代入前n 项和表达式中:
88(81)8(4)(2)882
S -=⨯-+⨯-=- 练习②:已知数列{}n a 的前n 项和为212343
n S n n =++,求这个数列的通项公式. 解:根据12n n S a a a =+++与1121n n S a a a --=+++ 可知,当1n >时,2211212153(1)(1)34343212n n n a S S n n n n n -=-=
++-----=+ 当1n =时,111112
a S =≠,所以 {}n a 的通项公式为47,112
51,1122
n n a n n ⎧ =⎪⎪=⎨⎪+ >⎪⎩ 练习③:求集合{}
21,,60M m m n n m +==-∈N <且的元素个数,并求这些元素的和.
解:由题意知 216030.5
m n n =-<< 所以,元素个数为30个
3030(301)30129002
S -=⨯+
⨯= 5、课时小结 本节课学习了以下内容:
1.等差数列的前n 项和公式1:2
)(1n n a a n S += 2.等差数列的前n 项和公式2:2)1(1d n n na S n -+
= Ⅴ.课后作业
课本P46习题[A 组]2、3题。