量子力学公式的矩阵表示
- 格式:ppt
- 大小:277.50 KB
- 文档页数:12
§4.2量子力学的矩阵表示Dψ∑Φ=ψΦ⎥⎥⎦⎤⎢⎢⎣⎡n n nψ∑Φ=n n nψ∑Φ=n n n*⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡ψψΦΦ= 21,2,1**ΨΦ+=若 0ΨΦ=+,则称态Ψ和Φ正交。
而1ΨΨ=+则是指态Ψ是归一化的。
基底m 在自身表象上的表示为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=010Φ m ← 第m 行基底的正交归一化写成 mn n mδ=+ΦΦ.态向基底的展开写成++=∑=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡1001ΦΨ21n C C C nn展开系数ΨΦn +=n C .对于连续谱情况本征方程: λλλ=Fˆ 基底: }{λ 正交归格化: )(λλδλ'-=' 封闭关系: I =⎰∞+∞-λλλd态ψ在Fˆ表象上的表示矩阵成为本征值λ的函数 ψ=ψλλ)(态ψ和Φ的内积为λλλd )()(*ψ⎰Φ=ψ∞+∞-因为λλλλλλλλd d d )()(][*ψ⎰Φ=⎰ψΦ=ψ⎰=ψ∞+∞-∞+∞-∞+∞-归一化条件为1)()(*=ψ⎰ψ=ψψ∞+∞-λλλd .而基底λ'在自身表象上表示为)(λλδλλ'-='.二、算符的表示 1.算符用矩阵表示算符是通过对态的作用定义的。
因为态用列矩阵表示,所以算符应该用矩阵表示。
Φ=ψLˆ Φ=ψ⎥⎦⎤⎢⎣⎡∑m n n L m n ˆ Φ=∑ψm n n Lm nˆ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ΦΦ=ψψ 212122211211L L L LΦL Ψ=矩阵L 是算符Lˆ在F ˆ表象上的表示 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=22211211L L L L L矩阵元为n Lm L mn ˆ= 可以在坐标表象上计算。
下面会看到,在坐标表象上矩阵元mn L 的计算公式为dx x xi x L x L n mmn )(),(ˆ)(*ϕϕ∂∂-⎰=∞+∞-式中n x x n =)(ϕ.【例】用包括Hamilton 量在内的力学量完全集的共同本征态的集合作基底的表象,称为能量表象。
量子力学知识:量子力学中的矩阵力学量子力学是一门极富挑战性和创新性的科学,涉及到微观粒子的行为和性质。
在量子力学中,矩阵力学是一种常见的量子力学理论框架,它提供了一种有效的方式来描述和计算原子和分子的态和能级。
在本文中,我们将讨论量子力学中的矩阵力学,包括其基本原理、应用和限制等方面。
1.基本原理矩阵力学是矩阵代数在量子力学中的应用。
在矩阵力学中,态矢量用列矢量表示,即:|φ⟩=(φ1, φ2, ...,φn)T其中,T代表转置,φ1, φ2, ..., φn表示态矢量的各个分量。
而算符用矩阵表示,即:A=(a11 a12 … a1n)(a21 a22 … a2n)(…… …… ……)(an1 an2 … ann)其中,aij表示算符A的第i行第j列元素。
通过矩阵算法,我们可以计算出在某一态下算符A的期望值和本征值等信息。
2.应用矩阵力学在量子力学的研究中有着广泛的应用,尤其是在原子和分子物理学中。
在原子物理学中,我们可以通过矩阵力学计算出原子的基态和激发态能级,以及原子的谱线和双光子跃迁等重要物理量。
在分子物理学中,矩阵力学可以用于描述分子的振动、转动、电荷分布和能级等性质,从而揭示分子内部的量子力学行为。
3.限制尽管矩阵力学在原子和分子物理学中有着广泛的应用,但它也有一些限制。
首先,矩阵力学只适用于可视为有限维希尔伯特空间的量子系统,因此对于高维的、复杂的量子系统,矩阵力学的应用将会受到限制。
其次,矩阵力学只能得到离散的能级和谱线,而对于连续的谱线和能带等物理量,需要采用其他方法进行计算和描述。
4.总结矩阵力学是量子力学中的一种基本理论框架,它提供了一种有效的方式来描述和计算原子和分子的态和能级。
通过矩阵代数的运算,我们可以得到原子和分子的重要物理量,如基态和激发态能级、谱线和双光子跃迁等。
尽管矩阵力学在量子物理学中有着广泛的应用,但它也有一些限制,如只适用于有限维希尔伯特空间的量子系统等。
量子力学中的矩阵表示方法量子力学是一门探索微观世界的科学,而矩阵表示方法是量子力学中非常重要的一部分。
通过矩阵表示方法,我们能够描述和计算微观粒子的性质和相互作用。
本文将介绍矩阵表示方法在量子力学中的应用,以及其背后的数学原理。
首先,我们来了解一下量子力学中的态。
在量子力学中,粒子的态可以通过波函数来描述。
波函数是一个复数函数,在给定的时刻和空间点上,它代表了粒子的状态。
对于多粒子系统,其波函数包含多个变量,比如位置和自旋等。
然而,波函数并不是常用的物理量,我们更关注的是物理量的平均值和概率分布。
而在量子力学中,物理量是由算符来表示的。
算符是一种对波函数作用的数学对象,它可以描述某个物理量的性质。
量子力学中最常用的算符就是哈密顿算符,它表示了系统的总能量。
接下来,我们讨论如何将算符用矩阵表示。
矩阵表示方法是量子力学中一种非常常用的计算工具。
它的基本思想是将量子力学中的算符映射为矩阵,从而可以方便地对波函数进行计算和分析。
对于一个算符A,我们可以将其对应的矩阵表示为A。
矩阵A的元素A(i,j)表示了算符A在波函数基矢量|i⟩和|j⟩之间的矩阵元。
矩阵元代表了算符A在不同态之间的跃迁概率。
通过矩阵表示方法,我们可以方便地进行算符之间的运算。
例如,两个算符A和B的乘积AB可以通过将它们对应的矩阵相乘来得到。
这样,我们就能够方便地计算复杂的量子力学表达式。
除了表示算符,矩阵表示方法还可以用于描述量子态之间的变换。
量子力学中的变换由幺正算符来表示,而幺正算符可以看作是保持态空间长度不变的线性变换。
幺正算符对应的矩阵是正交矩阵,它满足矩阵的厄米共轭等于其逆矩阵。
通过矩阵表示方法,我们可以方便地描述和求解量子系统的本征态和本征值。
对于一个算符A,如果满足A|i⟩=a(i)|i⟩,其中|i⟩是A的本征态,a(i)是对应的本征值,那么算符A对应的矩阵A的特征方程就是AΨ=aΨ。
通过求解特征方程,我们可以得到算符A的本征值和本征态。