-量子力学基础
- 格式:ppt
- 大小:3.37 MB
- 文档页数:101
大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。
本文将介绍一些关于量子力学的基本概念和原理。
2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。
解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。
2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。
通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。
3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。
通过波函数,可以计算出一系列平均值,用来描述系统的特征。
3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。
这涉及到测量的本质和粒子与波的性质之间的关系。
4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。
它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。
4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。
这为填充多电子原子如何达到稳态提供了解释。
5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。
它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。
5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。
6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。
介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。
6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。
结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。
第22章量⼦⼒学基础第22章量⼦⼒学基础⼀、德布罗意物质波德布罗意认为不仅光具有波粒⼆象性,实物粒⼦也具有波粒⼆象性。
描述实物粒⼦波函数中的、与实物粒⼦的能量E和动量p 的德布罗意关系:戴维孙-⾰末电⼦衍射实验,约恩孙电⼦双缝⼲涉实验都证实了电⼦具有的波动性。
⼆、海森伯不确定关系由于微观粒⼦具有波粒⼆象性,我们就⽆法同时精确地测定微观粒⼦坐标与动量,海森伯提出了如下的不确定关系:1、动量-坐标不确定关系2、时间-能量不确定关系三、波函数微观粒⼦具有波粒⼆象性,它不同于经典的波也不同于经典的粒⼦,要描述微观粒⼦群体随时间的变化,引⼊波函数。
波函数确定后,微观粒⼦的波粒⼆象性就能得到准确的描述。
波函数是微观粒⼦的态函数。
1、波函数的物理意义:某⼀时刻在空间某⼀位置粒⼦出现的⼏率正⽐于该时刻该位置波函数的平⽅,或,即⼏率密度2、波函数的归⼀化条件3、波函数的标准条件,单值有限连续。
四、薛定谔⽅程薛定谔⽅程是量⼦⼒学的基础⽅程,由它可解出粒⼦的波函数1、⾃由粒⼦:,,2、势场中粒⼦:*⾮定态:式中,为哈密顿算符。
定态:五、薛定谔⽅程应⽤实例1、⼀维势箱:⾦属中电⼦、原⼦核中质⼦势能分布的理想化模型。
它的势函数阱内⼀维定态薛定谔⽅程解得满⾜边界条件(标准条件)归⼀化条件的解的波函数能量当n=1时为基态能量,也叫零点能。
相应各量⼦数n的波函数,⼏率密度和能级分布如图:2、⼀维势垒:半导体中p-n结处电⼦和空⽳势能分布的简化模型。
3、隧道效应:粒⼦越过或穿透⾼于其总能量的势垒。
4、原⼦、分⼦运动的量⼦化特征:原⼦振动能量:分⼦转动能⼒:5、电⼦⾓动量:轨道⾓动量:,⾃旋⾓动量:,6、氢原⼦的定态:氢原⼦中电⼦的定态薛定谔⽅程解出来的波函数满⾜有限单值连续的标准条件可得下表中的四个量⼦数。
四个量⼦数表征氢原⼦中电⼦状态的特征,如表所列:⾓量⼦数给定以后,可取磁量⼦数给定以后,可取个值,即……⾃旋量⼦数只取两个值,确定电⼦的⾃旋⾓动量某⼀⽅向上的投影原⼦中不可能有两个或两个以上的电⼦具有完全相同的量⼦态,或者说⼀个原⼦中任何两个电⼦不可能具完全相同的四个量⼦数。
量子力学的基础量子力学是20世纪初建立起来的一门物理学理论,它的出现彻底颠覆了经典物理学的观念。
量子力学的基础包括了几个重要概念和原理,本文将对这些基础内容进行介绍和解析。
一、波粒二象性量子力学的基础之一是波粒二象性。
在经典物理学中,光被认为是粒子的流动,例如光的传播速度可以解释为光粒子在空间中的移动速度。
然而,根据量子力学的观点,光既展现出粒子特性,又表现出波动特性。
这意味着光既可以看作是一束光子流动,又可以看作是波动在空间中传播。
类似地,电子、中子等微观粒子也具有波粒二象性。
二、不确定性原理不确定性原理是量子力学的另一个基础概念。
量子力学认为,对于一个粒子的某些物理量(如位置和动量),无法同时进行精确测量,只能得到其一定范围的测量值。
这就是著名的不确定性原理。
如海森堡不确定性原理就表明,无法同时准确测量一个粒子的位置和动量。
这个原理挑战了经典物理学中的确定性观念,引发了科学界的巨大震动。
三、波函数和量子态量子力学中,波函数是描述粒子运动状态的数学函数。
波函数的平方值给出了粒子存在于某个位置的概率密度,而不再是经典物理学中的精确位置。
波函数可以用于计算任何粒子的性质和行为,因此是量子力学的核心概念之一。
根据波函数的形式,我们可以将粒子的状态分为几种不同的量子态,如基态、激发态等。
四、量子力学算符量子力学中,算符是一个非常重要的概念,用来描述和操作量子力学中的物理量。
算符对应于在物理现象中观察到的各种不同可测量的物理量,如位置、动量、能量等。
通过对算符进行操作和变换,我们可以得到粒子的各种物理性质和运动状态。
五、量子力学的数学框架量子力学除了以上基础概念外,还建立了一套严密的数学框架。
其中包括了波函数的薛定谔方程、量子力学算符的定义和性质、态矢量的表示等。
这些数学工具为量子力学的计算和研究提供了强大的支持。
结论量子力学的基础概念和原理为我们理解微观世界的规律和现象提供了有效的工具。
波粒二象性、不确定性原理、波函数和量子态、量子力学算符以及数学框架等内容是量子力学的重要组成部分。
量子力学基础量子力学是描述微观世界中物质和能量行为的一门科学,它在20世纪初由物理学家们逐步建立起来。
量子力学是现代物理学的基石,对于理解原子、分子、固体、核反应等现象具有重要意义。
本文将介绍一些量子力学的基础知识。
1. 波粒二象性量子力学将微观粒子既可以表现为粒子,又可以表现为波的特性称为波粒二象性。
这一概念是量子力学的核心之一。
例如,电子不仅可以具有粒子的位置和动量,还可以像波动一样干涉和衍射。
这对于解释实验数据和理解微观效应非常关键。
2. 不确定性原理不确定性原理是量子力学的另一个重要原理,由海森堡于1927年提出。
不确定性原理指出,在某些物理量的测量中,无法同时准确测量其位置和动量,或者能量和时间。
这是因为测量过程会对被测量的系统产生干扰,从而使得同时准确测量两个互相联系的物理量成为不可能。
3. 波函数和波函数坍缩波函数是量子系统在给定时刻的状态描述,它是与量子力学中的各个物理量相对应的一组数学函数。
波函数可以用来计算某个物理量的概率分布,从而预测实验测量结果。
当对一个物理量进行测量时,波函数会发生坍缩,即系统会塌缩到某个确定的状态上。
4. 薛定谔方程薛定谔方程是量子力学的基本方程之一,由奥地利物理学家薛定谔于1925年提出。
薛定谔方程描述了量子系统的演化规律,可用来计算波函数随时间的变化。
薛定谔方程是解释原子、分子、凝聚态物质等现象的重要工具。
5. 超越边界和量子隧穿效应在经典物理学中,粒子的运动受到势能的限制,当粒子的能量低于势垒时,无法跨越势垒。
然而,在量子力学中,由于波粒二象性,粒子可以通过量子隧穿效应,以概率的形式穿越势垒,即使其能量低于势垒。
6. 基态和激发态在量子力学中,系统的能量可以分为不同的离散能级。
基态是系统的最低能量状态,而激发态是高于基态的能量状态。
通过向系统提供能量,可以使系统从基态跃迁到激发态,这在原子和分子的能级转移中起着重要作用。
总结:量子力学作为现代科学的重要分支,为我们理解微观世界提供了重要的工具和理论框架。