奥数讲座_六年级奥数分数巧算1教学内容
- 格式:ppt
- 大小:1.18 MB
- 文档页数:12
第一讲:分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有1a b⨯a b <1111(a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:,形式的,我们有:1(1)(2)n n n ⨯+⨯+1(1)(2)(3)n n n n ⨯+⨯+⨯+1111[(1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1) (2)11a b a b a b a b a b b a+=+=+⨯⨯⨯2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
第一讲 : 分数的速算与巧算教课目的本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项: 是计算中需要发现规律、利用公式的过程,裂项与通项概括是密不行分的,本讲要修业生掌握裂项技巧及找寻通项进行解题的能力2、 换元: 让学生能够掌握等量代换的观点,经过等量代换讲复杂算式变为简单算式。
3、 循环小数与分数拆分: 掌握循环小数与分数的互化,循环小数之间简单的加、减运算,波及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项概括法通项概括法也要借助于代数,将算式化简,但换元法不过将“形同”的算式用字母取代并参加计算,使计算过程更为简 便,而通项概括法能将“形似”的复杂算式,用字母表示后化简为常有的一般形式. 知识点拨一、裂项综合(一)、“裂差”型运算(1) 关于分母能够写作两个因数乘积的分数,即1 形式的,这里我们把较小的数写在前方,即 a b ,那么有a b111 1a b b ()a a b(2) 关于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:1,1形式的,我们有:n (n 1) (n 2) n (n 1) (n 2) (n 3) n (n1 (n 2) 1 [ n 1 1) (n 1]1) 2 (n 1)(n2)1 1 11n (n 1) (n 2) (n 3)[(n 2)(n1) (n]3 n (n 1)2) (n 3)裂差型裂项的三大重点特点:(1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,但是只需将 x 提拿出来即可转 化为分子都是 1 的运算。
(2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常有的裂和型运算主要有以下两种形式:(1)a ba b1 1 ( 2) a 2b 2 a 2b 2 a ba b a b a b b a a ba b a b b a裂和型运算与裂差型运算的对照:裂差型运算的中心环节是 “两两抵消达到简化的目的” ,裂和型运算的题目不单有 “两两抵消” 型的,同时还有转变为 “分 数凑整”型的,以达到简化目的。
第一讲 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算 (1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
星系站 备课教员:*** 第一讲 分数的巧算一、教学目标: 1. 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,要求掌握裂项技巧及寻找通项进行解题的能力。
2. 换元:掌握等量代换的概念,通过等量代换将复杂算式变成简单算式。
3. 凑整法:掌握用凑整法将分数的计算转化为整数的计算。
二、教学重点: 发现规律、利用公式的过程,裂项与通项归纳是密不可分的。
三、教学难点: 让学生能够掌握等量代换的概念,通过等量代换将复杂算式变成简单算式。
四、教学准备: PPT 、分数卡片。
五、教学过程:第一课时(40分钟)一、外星游记(5分钟)上课前,将分数卡片(23,21,57,53……只有2个分数的和为2)分别贴在桌子底下。
让学生去找到自己的朋友(两个小朋友的分数和是整数),并且将找到的分数贴在黑板上。
哪一组先贴好并且是正确的将给予大拇指的奖励。
师:看来同学们都找到了自己的朋友了,我们一起来看一下这些数都有什么特点?生:它们的和都是整数,并且它们的和都相等。
师:同学们太棒了!其实在分数的计算里,这也是我们常用的方法——凑整法,今天我们就一起来学习这方面的知识。
【板书课题:分数的巧算】二、星海遨游(30分钟)(一)星海遨游1(10分钟)40394038403402401++⋯⋯+++ 师:同学们仔细观察一下题目中的分数,它们都有什么样的特点?生1:都是真分数。
生2:分母相同,都是40,分子是从1到39。
师:是的,分母相同的分数相加是怎么计算的?生:分母不变,分子相加减。
师:第一个加数和最后一个加数的和是多少?生:1。
师:第二个加数和倒数第二个加数的和是多少呢?生:也是1。
师:有什么发现吗?生:第n 个加数与倒数第n 个加数的和为1。
师:同学们太棒了!也就说,把式子分成两两一组,每一组的和为1,对吗? 生:对的。
师:那么总共可以分成多少组呢?生:因为总共有39个分数,两两一组,所以就有239组。