9.1 不等式 教学设计 教案
- 格式:docx
- 大小:151.54 KB
- 文档页数:5
人教版七年级下册9.1不等式第九章:不等式教学设计一、教学目标通过本章的学习,学生将会掌握以下知识点:1.理解不等式的概念;2.掌握比较大小的方法;3.掌握用不等式描述实际问题的方法;4.学会解一元一次不等式。
二、教学重点和难点1.教学重点是掌握不等式的基本概念和解一元一次不等式的方法。
2.教学难点是如何让学生能更好地理解不等式的概念和掌握解不等式的方法。
三、教学过程1. 导入环节通过比较两个物体,询问学生大小关系,并让学生排成一排,形成大小的顺序。
2. 知识讲解1.不等式的概念不等式是记号>、<、≥ 、≤ 等表示的数的大小关系。
例如:12 > 9、29 ≤ 30。
2.比较大小的方法告诉学生,比大小要看谁大、谁小,大的在前,小的在后。
比较大小的方法有三种:1.看它们的差值正负2.换算成相同的根式3.将它们分别化成相同的整数部分和真分数部分进行比较4.用不等式描述实际问题的方法让学生通过例子了解使用不等式描述实际问题的方法。
例如:如果你想掌握游泳技术,就必须努力练习,即:“学游泳的时间>学游泳的时间”。
4.解一元一次不等式的方法以解不等式x−2>3为例,让学生通过变形将不等式变成x>5。
3. 练习环节1.用不等式表示以下句子:1.66 大于 35;2.38 小于等于 100;3.7 加上某个数大于等于 18。
2.解以下一元一次不等式:m+1<10。
4. 总结归纳让学生总结本节课所学的知识。
四、教学效果评价教师可以通过以下几个方面进行评价:1.学生能够正确理解不等式的概念;2.学生能够掌握比较大小的方法;3.学生能够正确用不等式描述实际问题;4.学生能够正确解一元一次不等式。
五、板书设计符号名词>大于<小于≥大于等于≤小于等于x>y读作“x大于y”或“y小于x”x≥y读作“x大于等于y”六、教学反思本章节是七年级下册数学教学的重点和难点,但在教学过程中我发现学生们对不等式的概念理解不深,对解决一元一次不等式的方法感到困难。
新人教版七年级数学下册9.1《不等式》教案9.1.1 不等式及其解集【教学目标】知识技能目标1.了解不等式的意义,能用不等式刻画事物间的相互关系;学会用观察、类比、猜测解决问题.2.通过解决简单的实际问题,使学生自发地寻找不等式的解,理解不等式的解集.3.会把不等式的解集正确地表示在数轴上.过程性目标经历现实生活不等关系的探究过程,体会建立不等模型的思想;通过不等式解集在数轴上表示的探究,渗透数形结合思想.情感态度目标培养学生创新地思考问题的态度和细致地解决和求证问题的意识,产生学数学、爱数学的思想感情. 【重点难点】重点:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.难点:正确理解不等式解集的意义.【教学过程】一、创设情境①两个体重相同的孩子正在跷跷板上做游戏,现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?②一辆匀速行驶的汽车在11:20时距离A地50千米.要在12:00之前到达A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?从时间上来看:<;从路程上看:x>50.二、新知探究探究点1:不等式的定义问题1:观察引入中两个式子的特点:<和x>50.问题2:类比等式的定义,给这样的式子下个定义.要点归纳:像这样用符号“<”或“>”表示大小关系的式子,叫做不等式.强调:a+2≠a-2也是不等式.【即时训练】判断下列各式是不是不等式?①3<4;②x+3≠0;③4x-2y≤0;④7n-5≥2;⑤3x2+2>0;⑥5m+3=8.答案:①②③④⑤是,⑥不是强调:符号“≥”读作“大于或等于”,也可以说是“不小于”;符号“≤”读作“小于或等于”,也可以说是“不大于”.探究点2:不等式的解(解集)及其表示问题1:创设情境中要使汽车在12:00之前到达A地,你认为车速应该为多少呢?问题2:车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.上面所说的这些数,哪些是不等式x>50的解呢?问题4:判断下列数中哪些是不等式x>50的解:76,73,79,80,74.9,75.1,90,60.你能找出这个不等式其他的解吗?它到底有多少个解?这些解应满足什么条件?你从中发现了什么规律?(有,有无数个,它们都需要满足x>75)问题5:已知x1=1,x2=2,请在数轴上表示出x1,x2的位置,根据数轴判断x<1,x>2,1<x<2各对应数轴的哪一部分?如图所示:用数轴表示不等式的解集步骤及注意事项:第一步:画数轴;第二步:定界点;第三步:定方向.“>”“<”是空心;“≥”“≤”是实心.“>”“≥”向右画;“<”“≤”向左画.要点归纳:1.我们把使不等式成立的未知数的值叫做不等式的解.2.一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.例题讲解例1 设某数为x,根据某数与2的差小于3,列出关系式并结合数轴取点验证.解析x-2<3.分別取x=-2,-1,0,1,3.1,5,6,10.代入不等式,其中x=-2,-1,0,1,3.1代入后不等式成立,所以x=-2,-1,0,1,3.1是不等式x-2<3的解;x=5,6,10不是不等式x-2<3的解;这个不等式的解集表示为x<5.例2 在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1解析如图:【方法总结】用数轴表示不等式的解集,应记住下面的规律:1.大于向右画,小于向左画.2.>,<画空心圆.三、检测反馈1.把不等式x+1≥0的解集在数轴上表示出来,则正确的是 ( )2.设A,B,C表示三种不同物体,先用天平称了两次,情况如图所示,则这三个物体按质量从大到小应为( )A.A>B>CB.C>B>AC.B>A>CD.A>C>B3.有下列数:5,-4,,0,1,-a2+1,2,2.其中是不等式8-4x>0的解的有( ) A.4个 B.5个C.6个D.3个4.下列式子:①-m2≤0,②x+y>0,③a2+2ab+b2,④(a-b)2≥0,⑤-(y+1)<0.其中不等式有( )A.1个B.2个C.3个D.4个5.表示a,b两数的点在数轴上的位置如图所示,下列结论不正确的是( )A.a>0B.ab<0C.2a-b>0D.b-a>06.下列说法中错误的是( )A.2x<6的解集是x<3B.-x<-4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个7.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为_______.8.不等式x-3<0的解集是_______.9.用不等式表示下列各式.(1)a与1的和是正数:_______;(2)b与a的差是负数:_______;(3)a与b的平方和大于7:_______;(4)x的2倍与3的差小于-5:_______.10.一个不等式的解集如图所示,则这个不等式的正整数解是_______.11.有甲、乙两种型号的铁丝,每根甲型铁丝长度比每根乙型铁丝少3厘米,现取这两种型号的铁丝各两根分别做长方形的长和宽,焊接成周长大于2.1米的长方形铁丝框.(1)设每根乙型铁丝长为x厘米,按题意列出不等式.(2)如果每根乙型铁丝的长度有以下四种选择:45厘米、50厘米、55厘米、58厘米,那么哪些合适?四、本课小结教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1.什么是不等式?2.什么是不等式的解?3.什么是不等式的解集,它与不等式的解有什么区别与联系?4.用数轴表示不等式的解集要注意哪些方面?五、布置作业课堂作业:课本第115页练习课后作业:课本第119页习题9.1第1,2,3题.六、板书设计七、教学反思①[授课流程反思]本节通过实例创设情境,从“等”过渡到“不等”,进而探究了不等式的概念,解与解集,在数轴上表示不等式的解集.②[讲授效果反思]通过本节教学,学生对不等式有了进一步的认识,能够根据题意列出简单的不等式,并能验证不等式的解及表示不等式的解集.9.1.2 不等式的性质第1课时【教学目标】知识技能目标1.理解不等式的性质.2.利用不等式的性质解不等式.过程性目标经历类比等式的性质探究不等式性质的过程,培养学生自主探究、合作交流的意识,发展学生分析问题和解决问题的能力.情感态度目标通过观察、实验、类比获得新知,体验数学活动的探究性和创造性.【重点难点】重点:不等式的性质.难点:不等式的性质3.【教学过程】一、创设情境1.你能表述下面两个交通标志中的数学符号表示什么意义吗?2.什么是不等式?用“>”或“<”表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式.3.什么是等式?含有等号的式子就叫做等式.4.等式的基本性质有哪些?等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,c>0,那么ac=bc.如果a=b(c≠0),那么=.二、新知探究探究点1:不等式的性质问题1用“<”或“>”填空:(1)5>3,则5+2______3+2,5-2______3-2;-1<2,则-1+3______2+3,-1-3______2-3;a>b,则a±c______b±c;a<b,则a±c______b±c.(2)6>2,则6×5______2×5,____ ,当不等式的两边乘以同一个正数时,不等号的方向______.(3)-2<7,则-2×(-6)_______7×(-6),_______-.当不等式的两边乘以同一个负数时,不等号的方向_______.问题2 观察(1)、(2)、(3)总结其中的规律,概括不等式有哪些性质.要点归纳:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b,那么a±c>b±c.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变,用式子表示:如果a>b,c>0,那么ac>bc(或>).不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变,用式子表示:如果a>b,c<0,那么ac<bc(或<).【运用新知,深化理解】1.设a>b,用“<”、“>”填空,并填写理由.(1)5a_______5b.理由:_____________________.(2)a-7_______b-7,理由:___________________.(3)-3a_______-3b,理由:___________________.(4)3a+8_______3b+8,理由:___________________.(5)-7b+1_______-7a+1,理由:___________________.2.判断下列不等式的变形是否正确.(1)若a<b,且c≠0,则<;(2)若a>b,则1-a2<1-b2;(3)若a>b,则ac2>bc2;(4)若ac2<bc2,则a<b.探究点2:应用不等式的性质解不等式例1 (教材P117例1)分析:解不等式,就是要借助不等式的性质使不等式逐步化为x>a或x<a(a为常数)的形式.【教学说明】让学生自主探究,独立完成,然后相互交流,发现问题并及时纠正,教师巡视,适时予以指导. 【方法指导】1.变形时要注意不等式性质3的应用.2.不等式解集的两种表示方法:(1)从“数”的角度:用式子形式(如x>2),即用最简单形式的不等式x>a或x<a(a为常数)表示.(2)从“形”的角度:用数轴标出数轴上的某一区间,其中的点对应的数值都是不等式的解.三、检测反馈1.若x>y,则x-y>0,其根据是 ( )A.不等式性质1B.不等式性质2C.不等式性质3D.以上答案均不对2.由a<b得ac>bc的条件是( )A.c=0B.c>0C.c<0D.无法确定3.若x<y,则下列各式中正确的是( )A.x-3>y-3B.3x≤3yC.-3x>3yD.>4.已知a<b,则下列四个不等式中不正确的是( )A.4a<4bB.-4a<-4bC.a+4<b+4D.a-4<b-45.下列不等式能化成x>-2的是 ( )A.-x>-1B.x>-1C.x<-1D.-x<-16.不等式x+1>2变形为x>1.这是根据不等式的性质_______,不等式两边_______.7.若x<y,用“>”或“<”填空:(1)x-3_______y-3.(2)______ .(3)-3x_______-3y.(4)2x+1_______2y+1.(5)-5x+2_______-5y+2.(6)3x_______2x+y.8.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式,并在数轴上标示出来:(1)5x+2>0.(2)-x+1<x-2.(3)5-x<0.(4)3x-4<0.四、本课小结1.不等式的三个性质.2.运用不等式的性质3时,一定要变号.五、布置作业课堂作业:P119练习T1课后作业:P120习题9.1T4、5、6六、板书设计七、教学反思1.本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质.不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的很多章节,在实际问题中被广泛应用,可以说它是解决其他数学问题的一种有利工具.因此不等式的性质的学习对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用.在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的兴趣,培养自觉运用数学的意识.在本节课中,全课着重知识的动态生成,渗透数学的建模、类比、分类等思想方法,促使学生从学会向会学转化.同时要注意不等式性质3是难点,也是重点,在学生理解的同时,应多加训练.2.在处理例题的时候我的原则是夯实基础,基本知识的掌握和基本技能的训练同学们必须非常地熟练,所以在做每一道题的时候我都让他们说出是“为什么”,并在这一节重视用数轴表示不等式的解集.9.1.2 不等式的性质第2课时【教学目标】知识技能目标1.理解“≤”“≥”的含义,并掌握它们与“>”“<”的区别.2.掌握不等式的解集如何在数轴上表示.3.能利用不等式解决简单的实际问题.过程性目标学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;情感态度目标1.在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.2.让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣.【重点难点】重点:理解“≤”“≥”的含义,并掌握它们与“>”“<”的区别.难点:不等式性质的应用.【教学过程】一、创设情境1.不等式的基本性质是什么?2.上节课我们通过引入实例探索、归纳得到了不等式的性质,并能运用它们将不等式变形成“x>a”或“x<a”的形式.我们知道数学来源于生活,又服务于生活.在日常生活中就有这样的例子.如:(1)乘火车买半票的儿童身高不超1.1米.(2)正常人的血压是60~90毫米汞柱,高压是90~120毫米汞柱.(3)如图所示是一条公路上的交通标志图案,它们有着不同的意义,你知道图中的80所表示的含义吗?试着用不等式表示出来.3.小希就读的学校上午第一节课上课时间是8点开始,小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?二、新知探究探究点1:认识含“≤”或“≥”的不等式例题讲解例1 下列根据语句列出的不等式错误的是( )A.“x的3倍与1的和是正数”,表示为3x+1>0B.“m的与n的的差是非负数”,表示为m-n≥0C.“x与y的和不大于a的”,表示x+y≤ aD.“a,b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab解析选D.根据题意,找出关键词语“正数”“非负数”“不大于”“不小于”列出不等式即可.A.“x的3倍与1的和是正数”,表示为3x+1>0,正确;B.“m的与n的的差是非负数”,表示为m-n≥0,正确;C.“x与y的和不大于a的”,表示为x+y≤a,正确;D.“a,b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab错误,应表示为3(a+b)≥ab.【方法总结】此题主要考查了由实际问题列出不等式,关键是抓住题目中的关键词,如大于(小于)、不超过(不低于)、是正数(负数)、至少、最多等等,正确选择不等号.要点归纳:两个符号“≥”和“≤”,在不等式中含有等号.1.读法及含义:“≥”读作:“大于或等于”.含义是不小于,包括大于和等于.“≤”读作:“小于或等于”.含义是不大于,包括小于和等于.2.在数轴上表示:含等号的要画实心圆点,不含等号的要画空心圆圈.探究点2:不等式性质的应用根据创设情境中的问题3,思考以下问题:1.若设小希上午x点从家里出发才能不迟到,则x应满足怎样的关系式?2.你会解这个不等式吗?请说说解的过程.3.你能把这个不等式的解集在数轴上表示出来吗?【分组探讨】对上述三个问题,你是如何考虑的?先独立思考然后组内交流,作出记录,最后各组派代表发言.在学生充分讨论的基础上,师生共同归纳得出:x应满足的关系是:x+≤8,根据“不等式性质1”,在不等式的两边减去,得:x+-≤8-,即x≤7这个不等式的解集在数轴上表示如下:【方法指导】强调“≤”与“<”在意义上和数轴表示上的区别.用数轴表示不等式的解集的方法;借助数轴可以将不等式的解集直观地表示出来.在应用数轴表示不等式的解集时,要注意两个:“确定”:一是确定“边界点”,二是确定“方向”.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画,x<a 或x≤a向左画.例2 根据不等式的性质,解下列不等式,并在数轴上表示解集:(1)2x+5≥5x-4.(2)4-3x≤4x-3.(3)-+1≥.分析:先根据不等式的性质1,可以对不等式进行变形,然后根据不等式的性质2或3,可把不等式化为“x>a”“x<a”“x≥a”或“x≤a”的形式.例3 (教材P119例2)分析:(1)新注水的体积V与原有水的体积的和与容器的容积有什么关系?(2)新注入水的体积V可以是负数吗?(3)你能独立求出V的取值范围吗?(4)试将V的取值范围在数轴上表示出来.你认为在数轴上表示需要注意哪些?【方法总结】满足两个条件的不等式的解集在数轴上的表示,是指它们的公共部分.三、检测反馈1.用不等式表示图中的解集,其中正确的是( )A.x>-2B.x<-2C.x≥-2D.x≤-22.不等式-5x≤15的负整数解的积是( )A.-2B.2C.6D.-63.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为( )A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤724.用不等式表示下列语句并写出解集:(1)x的3倍大于或等于1.(2)x与3的和不小于6.(3)y与1的差不大于0.(4)y的小于或等于-2.5.用不等式的性质解下列不等式,并在数轴上表示解集:(1)x≤.(2)-8x≥10.6.下列几组数字分别表示三个线段的长,每一组中三个线段能否组成三角形?为什么?(1)3,4,5.(2)2,3,13.(3)2,6,8.(4)4,6,11.7.一罐饮料净重约300g,罐上注有“蛋白质含量≥0.6%”,其中蛋白质的含量为多少克?8.一部电梯最大负荷为1 000 kg,有12人共携带40 kg的东西乘电梯,他们的平均体重x应满足什么条件?四、本课小结1.理解不等式的有关概念,能灵活运用不等式的性质解不等式,并能把不等式的解集在数轴上准确表示出来.2.利用不等式解简单应用题.主要是会分析实际问题中的数量之间的不等关系,在审题过程中应抓关键词,正确理解关键词语的含义,并“翻译”成相应的不等符号.如“非负数”、“最多”、“至少”、“不大于”、“不小于”、“不低于”等.列出不等式,将实际问题转化为数学问题,然后通过解不等式解决实际问题.五、布置作业课本第119页第1,2题六、板书设计七、教学反思本课从发生在学生身边的事情入手,创设问题情境,激发学生的学习兴趣和求知欲望.以问题为中心,使每一位学生都能积极思考,发散思维,让学生在“做数学”的过程中,亲身体验问题的发生、发现、发展与解决的全过程,采取自主探索、合作交流、深入研讨、步步为营的措施,为学生营造一个自主学习、主动发展的广阔空间,开辟探究、研讨、解决问题的广阔天地,使学生快快乐乐地成为学习的主人.教学要以实际生活为背景.学生亲身经历过现实问题数学化的过程,就会获得富有生命力的数学知识,进一步认识数学,体验数学的价值.只有让学生真切地体会到生活中处处有数学,才有生活中处处用数学的可能,以此培养学生的应用意识.教师在教学中要敢于打破教材格局.本课对教材作出全新的调整,注重以问题为线索来探究不等式的解法,再用所学知识去解决问题.放开手脚让每个学生从不同的角度、用不同的方法充分展现“自我”,真正构建起学生的课堂主人的地位,使他们的思维能力、情感态度和价值观念等各个方面都能迈上一个新的台阶.。
人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。
本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。
教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。
但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。
此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会求解不等式的解集,并能解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。
2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。
2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。
3.运用实例分析,让学生体会不等式在实际问题中的应用。
4.注重练习,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。
2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。
3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。
通过讨论,引出不等式的概念。
2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。
通过实例演示,让学生直观地感受不等式的性质。
3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。
9.1.1不等式及其解集教学设计目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)1.从时间方面虑:<2.从行程方面: >503.从速度方面考虑:x>50÷设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:<,>50,x>50÷都是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式<,>50的解.3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
人教版数学七年级下册9.1.1《不等式及其解集》教学设计1一. 教材分析《不等式及其解集》是人教版数学七年级下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对后续不等式变形、解不等式组等内容有重要影响。
教材通过例题和练习题,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
二. 学情分析学生在七年级上册已经学习了有理数的概念,对数轴有了一定的了解。
但他们对不等式的概念和解集的表示方法可能还比较陌生。
因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
三. 教学目标1.了解不等式的概念,理解不等式解集的含义。
2.学会用数轴表示不等式的解集。
3.能够解简单的不等式。
四. 教学重难点1.不等式的概念及其与等式的区别。
2.不等式解集的含义及其表示方法。
3.解简单的不等式。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。
2.利用数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
3.通过练习题和小组讨论,巩固所学知识,提高解题能力。
六. 教学准备1.教学PPT或黑板。
2.练习题和答案。
3.数轴和标记工具。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索不等式的概念。
例如:“在日常生活中,你遇到过哪些不等式?”让学生举例说明,并解释不等式的含义。
2.呈现(15分钟)讲解不等式的概念,介绍不等式与等式的区别。
通过数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
例如,展示数轴,并在数轴上标出不同不等式的解集,让学生观察和理解。
3.操练(15分钟)让学生练习解简单的不等式。
给出一些具体的不等式,要求学生将其解集用数轴表示出来。
例如,解不等式3x > 6,将其解集用数轴表示出来。
4.巩固(10分钟)通过小组讨论和练习题,巩固所学知识。
9.1不等式及其解集教案这是9.1不等式及其解集教案,是优秀的数学教案文章,供老师家长们参考学习。
9.1不等式及其解集教案第1篇[教学目标]1.了解不等式概念,理解不等式的解集,能正确表示不等式的解集2.培养学生的数感,渗透数形结合的思想.[教学重点与难点]重点:不等式的解集的表示.难点:不等式解集的确定.[教学设计][设计说明]一.问题探知某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植请树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?依题意得4x>6(x-10)1.不等式:用">"或"<"号表示大小关系的式子,叫不等式.解析:(1)用≠表示不等关系的式子也叫不等式(2)不等式中含有未知数,也可以不含有未知数;(3)注意不大于和不小于的说法例1用不等式表示(1)a与1的和是正数;(2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;(4)c与4的和的30%不大于-2;(5)x除以2的商加上2,至多为5;(6)a与b两数的和的平方不可能大于3.二.不等式的解不等式的解:能使不等式成立的未知数的值,叫不等式的解.解析:不等式的解可能不止一个.例2下列各数中,哪些是不等是x+1<3的解?哪些不是?-3,-1,0,1,1.5,2.5,3,3.5解:略.练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5的解?再找出另外的小于0的解两个.2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?三.不等式的解集1.不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.分析不等关系,渗透不等式的列法学生列出不等式,教师注意纠正错误明确验证解的方法,引入不等式的解集概念解析:解集是个范围例3下列说法中正确的是()A.x=3是不是不等式2x>1的解B.x=3是不是不等式2x>1的唯一解;C.x=3不是不等式2x>1的解;D.x=3是不等式2x>1的解集2.不等式解集的表示方法例4在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1分析:按画数轴,定界点,走方向的步骤答解:注意:1.实心点表示包括这个点,空心点表示不包括这个点2.大于向右走,小于向左走.练习:如图,表示的是不等式的解集,其中错误的是()练习:1.在数轴上表示下列不等式的解集(1)x>3(2)x<2(3)y≥-1(4)y≤0(5)x≠42.教材128:1,2,3第3题:要求试着在数轴上表示[小结]1.不等式的解和解集;2.不等式解集的表示方法.[作业]必做题:教科书134页习题:2题9.1不等式及其解集教案第2篇我的本节课学习的人民教育出版社出版的六三制初中数学七年级下册,第九章第一节的第一课时,主要学习不等式的定义及符号表示,不等式的解、解集、解不等式、一元一次不等式等的定义,不等式解集的表示方法等内容。
人教版数学七年级下册9.1《不等式》教学设计一. 教材分析人教版数学七年级下册9.1《不等式》是学生学习初中数学的重要内容,它为学生提供了初步了解不等式、解决实际问题以及进一步学习函数、方程等数学知识的基础。
本节内容主要包括不等式的概念、不等式的性质以及不等式的解法等。
教材通过丰富的实例,引导学生认识不等式,并通过自主探究活动,让学生体验不等式的性质,从而培养学生的抽象思维能力和解决实际问题的能力。
二. 学情分析学生在七年级上册已经学习了有理数、实数等基础知识,对数轴、绝对值等概念有了一定的了解。
但是,对于不等式的概念和性质,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的已有知识,通过实例和活动,让学生逐步理解和掌握不等式的相关知识。
三. 教学目标1.了解不等式的概念,能正确理解不等号(>、≥、<、≤)的含义。
2.掌握不等式的性质,并能运用性质解决实际问题。
3.培养学生的抽象思维能力和解决实际问题的能力。
四. 教学重难点1.不等式的概念和性质。
2.不等式的解法。
五. 教学方法1.情境教学法:通过生活实例引入不等式,让学生感受不等式的实际意义。
2.自主探究法:引导学生通过小组合作、讨论,发现不等式的性质。
3.案例教学法:通过具体案例,让学生学会解决实际问题。
六. 教学准备1.教学课件:制作课件,展示不等式的概念、性质和实例。
2.学习材料:为学生准备相关的不等式实例和练习题。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例,如温度、身高等,引导学生认识不等式。
向学生介绍不等号(>、≥、<、≤)的含义。
2.呈现(10分钟)向学生呈现一组不等式,让学生观察并总结不等式的特点。
通过小组讨论,引导学生发现不等式的性质。
3.操练(10分钟)让学生分组进行练习,运用不等式的性质解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些不等式题目,检验学生对不等式的理解和掌握程度。
新人教版七年级数学下册《9.1 不等式》教案设计
新人教版七年级数学下册《9.1 不等式》教案设
计
活动1回顾等式的性质
活动2探究不等式的性质
活动3巩固练习不等式的性质
活动4应用不等式的性质解简单的一元一次不等式
活动5课堂小结,布置作业
活动1利用天平演示,师生共同回顾等式的性质,帮助学生激活与本节内容有关的已有知识,为探索不等式的性质做准备.
活动2利用天平观察及用数字探索等方法,探究不等式的变化规律,得出不等式的三条性质,让学生体会不等式与等式的异同.
活动3通过应用不等式的性质,对不等式进行简单的有目的的变形,使学生理解不等式的性质,并能应用不等式的性质.活动4通过应用不等式的性质解一元一次不等式,使学生进一步理解不等式的性质,并学会应用不等式的性质解不等式的方法,体会不等式性质的应用价值.
活动5学生归纳总结本节课的主要内容——不等式的性质,交流在探索不等式性质的过程中的心得和体会,不断积累数学活动经验,并通过作业,及时了解学生的学习情况,指导下一步的教学.
的性质,探究不等式的性质做好铺垫;并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识的习惯.。
教学准备
1. 教学目标
一、知识与能力:
了解不等式概念;
理解不等式的解集;
能用数轴表示不等式的解集;
二、过程与方法:
经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
三、情感、态度与价值观:
通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域.
2. 教学重点/难点
教学重点:
正确理解不等式及不等式解与解集的意义,把不等式的解集正确地表示到数轴上.
教学难点:
正确理解不等式解集的意义.
3. 教学用具
4. 标签
教学过程。