电位差计的原理和使用实验报告
- 格式:doc
- 大小:30.00 KB
- 文档页数:11
大学物理电位差计实验报告大学物理电位差计实验报告引言:电位差计是一种常用的物理实验仪器,用于测量电场中两点之间的电位差。
本实验旨在通过使用电位差计,探究电势差的概念和测量方法,并通过实验数据的分析和处理,验证电位差的计算公式。
实验原理:电位差是指电场中两点之间的电势差。
在均匀电场中,电位差与两点之间的距离成正比,与电场强度成正比。
电位差可以通过电势差计测量,电势差计的工作原理是基于电势差与电流的关系。
实验步骤:1. 将电势差计连接到电源和待测电场中的两点之间。
2. 调节电势差计的灵敏度,使其能够测量待测电场中的电位差。
3. 记录电势差计的示数,并测量两点之间的距离。
4. 重复上述步骤,测量不同距离下的电位差。
实验数据分析:通过实验测得的数据,我们可以计算出电位差与距离之间的关系。
根据电势差与距离成正比的原理,我们可以得到以下公式:V = k * d其中,V为电位差,k为比例常数,d为距离。
通过对实验数据进行线性拟合,我们可以求出比例常数k的值。
实验结果:通过对实验数据进行处理,我们得到了电位差与距离之间的关系。
根据线性拟合的结果,我们可以得到比例常数k的值为X。
这意味着在该电场中,每增加一单位的距离,电位差增加X单位。
讨论与结论:本实验通过电位差计测量了电场中的电位差,并验证了电位差与距离成正比的关系。
实验结果表明,在均匀电场中,电位差与距离之间存在线性关系。
这一结果与理论预期相符。
然而,需要注意的是,实验中的电场并非绝对均匀,存在一定的误差。
这可能是由于电势差计的灵敏度不够高,以及电场中存在的其他影响因素所致。
为了提高实验的精确度,可以采取一些措施,如增加测量次数、提高电势差计的精度等。
总结:通过本次实验,我们深入了解了电位差计的原理和使用方法,并通过实验数据的处理,验证了电位差与距离成正比的关系。
这一实验不仅加深了我们对电势差的理解,还培养了我们的实验操作和数据处理能力。
在今后的学习和研究中,我们将继续探索电势差的应用和相关领域的研究。
电位差计实验报告
1. 实验目的
本实验旨在通过使用电位差计测量电路中的电位差,掌握电位差计的基本原理和使用方法。
2. 实验原理
电位差是指两点之间的电势差,通常用伏特(V)作单位。
电位差计是一种测量电路中电位差的仪器。
电位差计的工作原理基于热电效应,即当两种不同金属接触时,由于其电子云结构的不同,会形成一个电势差,称为热电势。
通过测量电路中两个不同金属的热电势差,可以计算出电路中的电位差。
3. 实验器材
本实验所使用的器材有:电位差计、两个电极、电阻箱、直流电源。
4. 实验步骤
(1)将电位差计和电阻箱连接在一起,用直流电源给电路供电。
(2)将两个电极分别连接在电路的不同位置,测量电路中两点之间的电位差。
(3)重复步骤(2),改变电路中电阻箱的阻值,测量电路中不同
阻值下的电位差。
5. 实验结果
通过实验测量得到了电路中不同位置的电位差,并记录在表格中。
同时,根据电路中不同阻值下测量得到的电位差,绘制出了电位差与电阻大小的关系曲线。
6. 结论
本实验通过使用电位差计测量电路中的电位差,掌握了电位差计的基本原理和使用方法。
实验结果表明,电位差与电路中的阻值有关,电路中阻值越大,电位差也越大。
7. 实验注意事项
(1)在实验中应注意保持电路的稳定性,避免电路中出现松动或接触不良等问题。
(2)在测量电位差时,应注意电位差计的极性,防止读数出错。
(3)应注意实验安全,避免电路中出现过高电压或电流等危险情况。
8. 参考文献
无。
电位差计的原理和使用实验报告电位差计是一种用来测量电压差的仪器,它广泛应用于物理实验、工程技术和科学研究中。
本文将介绍电位差计的原理和使用实验报告,以帮助读者更好地了解和掌握这一仪器的使用方法和实验技巧。
电位差计的原理。
电位差计是利用电场力线对电荷的作用,测定电场强度的一种仪器。
其原理基于电场力线在电场中的作用,当电场力线在电场中产生位移时,电位差计可以测量出电场力线的位移距离,从而计算出电场强度。
电位差计的使用实验报告。
实验目的,通过使用电位差计测量不同电场中的电位差,验证电场强度与电位差之间的关系。
实验器材,电位差计、电源、导线、电场装置。
实验步骤:1. 搭建电场装置,保证电场的均匀性和稳定性。
2. 将电位差计的两个探针分别连接到电场中的不同位置,记录下两个位置的电位差值。
3. 调整电场装置,使得电场强度发生变化,再次使用电位差计测量不同位置的电位差值。
4. 根据实验数据计算出不同位置的电场强度,并绘制电场强度与电位差的关系曲线。
实验结果分析:通过实验数据的分析,我们可以得出电场强度与电位差之间存在着一定的关系,通常情况下,电场强度与电位差成正比。
在电场均匀的情况下,电场强度与电位差的关系可以用以下公式表示,E = -ΔV/d,其中E为电场强度,ΔV为电位差,d为两个探针的距离。
实验结论:通过本次实验,我们验证了电场强度与电位差之间的关系,同时也掌握了使用电位差计测量电场强度的方法。
电位差计作为一种重要的实验仪器,在物理实验和科学研究中具有广泛的应用价值。
总结:电位差计是一种用来测量电压差的仪器,其原理基于电场力线在电场中的作用。
通过实验,我们可以验证电场强度与电位差之间的关系,并掌握使用电位差计测量电场强度的方法。
希望本文能够帮助读者更好地了解和掌握电位差计的原理和使用实验报告,为实验和研究工作提供帮助。
电位差计的原理和使用实验报告一、实验目的1、理解电位差计的工作原理。
2、掌握电位差计的使用方法。
3、学会用电位差计测量电动势和电位差。
二、实验原理电位差计是一种精密测量电动势或电位差的仪器,其基本原理是补偿法。
补偿法的原理是:在一个闭合回路中,如果存在电动势不同的电源,当调节电路中的某个电阻使得通过检流计的电流为零时,此时两个电源在回路中产生的电动势相互抵消,被测量的电动势与已知的标准电动势相等。
电位差计主要由工作电源、标准电池、测量电路和检流计等部分组成。
工作电源提供稳定的电流,标准电池具有稳定的电动势,其电动势的值是已知的且经过精确测定。
测量电路由电阻丝和滑动触头组成,通过调节滑动触头的位置,可以改变电阻的比例,从而改变测量电路两端的电压。
检流计用于检测回路中的电流是否为零。
当测量未知电动势时,将未知电动势接入测量电路,调节滑动触头的位置,直到检流计指针指零,此时测量电路中电阻丝上的电压降与未知电动势相等。
根据电阻丝的长度比例和已知的标准电动势,就可以计算出未知电动势的值。
三、实验仪器1、电位差计2、标准电池3、检流计4、稳压电源5、待测电源6、电阻箱7、导线若干四、实验步骤1、连接电路按照实验电路图连接好电路,注意各仪器的正负极连接要正确,导线要连接牢固。
2、校准电位差计(1)将电位差计的转换开关置于“标准”位置。
(2)调节电位差计的工作电流调节电阻,使检流计指针指零,此时电位差计的工作电流被校准为标准值。
3、测量未知电动势(1)将电位差计的转换开关置于“未知”位置。
(2)将待测电源接入测量电路,调节滑动触头的位置,使检流计指针指零。
(3)记录此时电阻丝上滑动触头的位置,根据电阻丝的长度比例和标准电动势计算出未知电动势的值。
4、重复测量重复上述测量步骤,多次测量未知电动势,取平均值以减小误差。
5、测量电位差(1)将两个待测电位接入测量电路。
(2)调节滑动触头的位置,使检流计指针指零。
(3)记录此时电阻丝上滑动触头的位置,计算出两个待测电位之间的差值。
电位差计的使用实验报告实验名称:电位差计的使用实验实验目的:学习电位差计的使用方法,掌握测量电势差的基本技能。
实验原理:电势差是指两个电势不同的点之间的电势差异。
电位差计是测量电势差的仪器之一,其原理是利用电荷在电势差作用下的受力运动。
由于电势差和电场强度之间的关系为E=ΔU/d,因此在测量电势差时可以用电位差计来检测两个点之间的电场强度,并由此计算出电势差。
实验仪器:电位差计、导线、电池、电阻器、万用表、扁平电容器、直尺、卡尺、实验室仪器箱。
实验步骤:1. 将电势差计的两个电极连接到被测电路的两端,注意正负极的连接。
2. 开启电势差计的电源开关,调节滑动变阻器上的电位差计游标。
3. 用导线连接电势差计的负电极和电路的接地点。
4. 将扁平电容器放置在被测电路中,然后将电位差计连接到扁平电容器的电路上。
根据电容器的电容值和电势差计的指示值,计算电势差。
5. 测量多组数据,并根据测得的数据作出电势差与电流的图像。
实验结果:通过多组电势差计测量数据,我们得到了不同电流下的电势差值。
通过计算和比较这些值,我们得出了这些电势差值与电流之间的关系,并绘制出了相应的图像。
通过分析实验数据,我们得出了以下结论:1. 电势差与电流成正比关系。
2. 电势差与电路中电阻、电容等负载电器有关。
3. 电势差计的使用可以用于测量不同电路的电势差值,从而判断电路中是否存在故障。
实验总结:本实验通过对电势差计的使用和测量数据的分析,让我们加深了对电势差和电场强度以及电流之间的关系理解,提高了我们测量电路电势差的技能和能力。
同时,我们还发现电动势源、电缆和电接头等对电势差的影响,这些知识不仅有助于我们更好地了解电路的工作原理,还有助于我们在实际工作中更好地排除故障,提高工作效率。
课程名称:大学物理实验(一)实验名称:电位差计二、实验原理1.平衡补偿原理:图1 平衡补偿示意图如上图所示,设E x是待测电动势或未知电压,E s是电压可调的电源,电表G是高灵敏度的检流计,E x和E s通过检流计并联在一起。
接通电路后调节E s的大小,当E x=E s时,检流计将不偏转,即电路中没有电流,两个电源的电动势大小相等,称为“补偿”,若已知补偿状态下E s的大小,就可以确定E x。
2.电位差计原理图2 电位差计工作原理图图3 电位差计1)机械调零。
2)校准工作电流10mA。
K2接到“标准”,调节工作电流,使检流计无电流通过。
此时:U AB=E N,I F=E N / R N=10.0000mA。
3)测量标准电阻上面的电压。
K2接到“未知”,调节“补偿电压调节”,使检流计无电流通过,E X = U BC = IF R BC 。
4)算标准电阻上电流,用来测试电流表的精度。
3.电位差计接线图:图4 实验接线图4.测试电流表的精度:电位差计校准后相当于伏特表,测量出标准电阻的电压后,配合标准电阻的电阻值测出电流,与电流表示数比较,从而测试电流表的精度。
三、实验仪器1.一个UJ33a型电位差计图1 UJ33a型电位差计使用方法:a)接线:先确认电位差计的“K2”处于断开状态(垂直向上),然后将待测电压或电动势高的高电位接到电位差计“未知”端的“+”接线柱,低电位接到“-”接线柱。
b)开机:将“K3”选择到“输出”端,然后开启电位差计电源,电源开启后再将“K3”选择到“测量”端。
c)选择倍率:将“K1”从断的位置旋到所需的倍率(不同的倍率对应不同的量程)。
d)调零:用“调零”旋钮,令检流计回零。
e)校准工作电流:将“K2”扳到“标准”端,调节“工作电流调节”旋钮,令检流计回零,校准工作电流的步骤就完成了。
f)测量:电位差计的灵敏度很高,为了保护检流计,必须估算或用万用表粗测未知电动势或电压的大小,然后调节测量读数盘(Ⅰ、Ⅱ、Ⅲ)到相应位置,确认输出和接入的电压相差不大,然后将“K2”扳到“未知”端,调节测量读数盘Ⅲ,令检流计回零,读出测量值(如果需要调节读数盘Ⅲ、Ⅲ,必须将“K2”断开防止损坏电位差计)。
电位差计的原理与使用实验报告电位差计的原理与使用实验报告引言电位差计是一种用于测量电势差的仪器,广泛应用于物理、化学和生物学等领域。
本实验旨在探究电位差计的工作原理,并通过实验验证其在测量电势差方面的可靠性和准确性。
实验目的1. 了解电位差计的工作原理;2. 掌握电位差计的使用方法;3. 验证电位差计在测量电势差方面的准确性。
实验材料与仪器1. 电位差计;2. 两个电极;3. 电源;4. 连接线;5. 标准电池。
实验步骤1. 将电位差计连接至电源,并确保电位差计正常工作;2. 将两个电极分别与电位差计的引线相连;3. 将一个电极连接至标准电池的正极,另一个电极连接至标准电池的负极;4. 记录电位差计显示的电势差数值;5. 更换不同电池并重复步骤4,记录不同电势差数值;6. 计算并比较不同电池的电势差。
实验结果与分析通过实验记录的数据,我们可以得到不同电池的电势差数值。
根据电位差计的工作原理,电位差计通过测量两个电极之间的电势差来计算电势差。
实验结果表明,电位差计能够准确地测量不同电池的电势差,并且相对误差较小。
实验结论电位差计是一种可靠且准确的测量电势差的仪器。
通过实验验证,我们得出结论:电位差计能够精确测量不同电池的电势差,并且具有较小的误差。
实验应用电位差计在科学研究和工程应用中具有广泛的用途。
它可以用于测量电池的电势差,评估电池的性能;还可以用于测量电路中的电势差,帮助工程师进行电路设计和故障排除;此外,电位差计还可用于生物学研究中,测量生物体内的电势差,以了解生物体的电生理特性。
结语通过本次实验,我们深入了解了电位差计的工作原理,并验证了其在测量电势差方面的可靠性和准确性。
电位差计作为一种重要的测量仪器,在科学研究和工程应用中发挥着重要的作用。
我们应该加强对电位差计的学习和应用,以推动科学技术的发展和进步。
电位差计的原理和使用实验报告电位差计(Voltmeter)是一种用于测量电路中两点之间电位差的仪器。
它基于电势差的定义,利用电路中的电流和电阻来测量电势差。
电位差计的原理是基于欧姆定律和电流比例原理。
根据欧姆定律,电流与电压成正比,即I=V/R,其中I为电流,V为电压,R为电阻。
当电流通过一个已知电阻时,可以测量到电压,通过测量电压和已知电阻的比例关系,可以确定电势差的大小。
电位差计一般由一个电流表和一个可变电阻组成。
可变电阻用于调节电势差计的灵敏度,以便适应不同电势差的测量范围。
在测量时,将电位差计的两个触点分别连接到待测电路的两个测点上,电流通过电势差计,电阻的电压降会被电流表测量,并通过电流与电压的比例得到电势差的大小。
使用电位差计测量电势差的步骤如下:1. 将电位差计的电阻调节到最大,以保证灵敏度较低。
2. 将电位差计的黑色触点连接到电路中电势较低的点,红色触点连接到电势较高的点,确保连接正确。
3. 打开电位差计的开关,记录电位差计中的电流数值。
4. 根据电流表的刻度和电位差计的比例关系,计算出电势差的大小。
使用实验报告:实验目的:学习使用电位差计测量电路中的电势差,并了解电位差计的原理和使用方法。
实验仪器:电位差计、电流表、电阻箱、导线等。
实验步骤:1. 准备实验仪器,并确认电位差计的电阻调节到最大,以保证灵敏度较低。
2. 将电位差计的黑色触点连接到待测电路中电势较低的点,红色触点连接到电势较高的点,确保连接正确。
3. 打开电位差计的开关,记录电位差计中的电流数值。
4. 根据电流表的刻度和电位差计的比例关系,计算出电势差的大小。
5. 调节电位差计的电阻,以提高灵敏度,再次进行电势差的测量。
6. 重复以上步骤,测量不同电路中的电势差。
实验结果及讨论:根据实验测得的数据,我们可以计算出不同电路中的电势差,并对结果进行分析和讨论。
通过改变电位差计的电阻,我们可以调节电位差计的灵敏度,适应不同电势差的测量范围。
电位差计的使用实验报告实验目的,通过使用电位差计,掌握其使用方法,并通过实验验证电位差计的测量精度和准确性。
实验仪器,电位差计、电源、导线、待测电路。
实验原理,电位差计是一种用来测量电路中两点之间电位差的仪器。
当电位差计的两个探头分别接触电路中的两个点时,电位差计会显示出这两点之间的电位差值。
实验步骤:1. 将电位差计的正负极分别接入电源的正负极,并将电位差计的示数调至零位。
2. 将电位差计的两个探头分别接触待测电路中的两个点,记录下电位差计的示数。
3. 更换待测电路中的两个点,再次记录电位差计的示数。
4. 重复步骤3,直至所有待测点的电位差均已记录。
实验数据处理:将实验记录的电位差计示数与实际测得的电路电压进行比较,计算电位差计的测量误差。
实验结果分析:通过实验数据处理,我们可以得出电位差计的测量精度和准确性。
在实验中,我们发现电位差计的示数与实际电路电压基本吻合,表明电位差计具有较高的测量精度和准确性。
实验结论:电位差计是一种用来测量电路中两点之间电位差的仪器,通过实验验证,我们得出结论,电位差计具有较高的测量精度和准确性,可以准确地测量电路中的电位差。
实验注意事项:1. 在使用电位差计时,要注意接触点的清洁,以确保测量的准确性。
2. 在测量电位差时,要注意避免外界干扰,保证测量结果的准确性。
3. 在测量结束后,要及时关闭电源,避免浪费电力和造成安全隐患。
实验中遇到的问题及解决方法:在实验中,我们遇到了电位差计示数不稳定的问题,经过检查发现是接触点不良导致的,我们及时清洁接触点,问题得到解决。
实验改进方向:在今后的实验中,我们将更加注意电路的接触点清洁,以减少测量误差。
实验意义:通过本次实验,我们深入了解了电位差计的使用方法和测量精度,为今后的实验和工作提供了重要的参考和指导。
感谢参与本次实验的所有同学和老师的支持和帮助!以上就是本次实验的实验报告,希望对大家有所帮助。
电位差计的应用实验报告电位差计的应用实验报告引言:电位差计是一种用于测量电压差异的仪器,广泛应用于科学研究和工程实践中。
本实验旨在探究电位差计的工作原理及其在不同领域中的应用。
一、电位差计的工作原理电位差计利用电势差来测量电路中的电压差异。
其基本原理是根据电势差在电路中的分布情况,通过测量两个电极之间的电势差来推断电路中其他位置的电势差。
电位差计由两个电极和一个电势计组成,其中一个电极连接到待测点,另一个电极连接到参考点。
通过测量这两个电极之间的电势差,可以得到待测点相对于参考点的电压。
二、电位差计在物理实验中的应用1. 测量电池电压通过将电位差计的一个电极连接到电池的正极,另一个电极连接到电池的负极,可以直接测量电池的电压。
这对于研究电池的性能和寿命非常重要。
2. 研究电路中的电势分布电位差计可以用来测量电路中不同位置的电势差,从而研究电路中电势的分布情况。
通过这种方法,可以找出电路中存在的电势差异常或者电势梯度,进而分析电路的性能。
3. 测量电场强度电位差计可以用来测量电场中不同位置的电势差,从而计算出电场强度。
这对于研究电场的分布和性质非常重要,例如在电场中的粒子加速器实验中。
三、电位差计在生物医学中的应用1. 测量心电图心电图是一种用于检测心脏电活动的方法,通过将电位差计的电极连接到患者的身体上,可以测量心脏不同位置的电势差,从而得到心电图。
这对于诊断心脏疾病和监测心脏健康非常重要。
2. 脑电图研究脑电图是一种用于记录脑电活动的方法,通过将电位差计的电极连接到患者的头皮上,可以测量不同脑区的电势差,从而得到脑电图。
这对于研究脑功能和诊断脑部疾病非常重要。
3. 生物电位测量电位差计可以用于测量生物体内的电势差,从而研究生物体内部的电活动。
例如,可以通过测量肌肉电位差来研究肌肉的收缩和放松过程,或者通过测量神经电位差来研究神经传导过程。
结论:电位差计是一种重要的电压测量仪器,其应用广泛涉及物理、生物医学等领域。
电位差计的原理和使用实验报告
篇一:电位差计的原理及使用预习、原始数据、实验报告
实验预习报告
2
3
4
实验原始数据记录表
5
篇二:实验6 电位差计的原理和使用
实验6 电位差计的原理和使用
电位差计是测量电动势和电位差的主要仪器之一。
用电位差计测量未知电动势,就是将未知电压与电位差计上的已知电压相比较。
由于应用了补偿原理和比较测量实验方法,测量的结果仅仅依赖于准确度极高的标准电池、标准电阻以及高灵敏度的检流计,测量精度可
高达0.05%。
它不仅被用来精确地测量电动势、电压、电流和电阻,而且还用来测量电量,如温度、压力、位移和速度等。
在校准电表和直流电桥等直读式仪表上也有重要作用。
电位差计的优点很多,但也有一些缺点,如测量过程比较烦琐,工作时间比较长,工作电流容易变化,易影响测量结果,因此每次使用都采用校准和测量两个步骤。
实验目的
1. 掌握电位差计的工作原理、结构、特点和操作方法;
2. 掌握用箱式电位差计测量电动势或电压的基本方法。
预习检测题
1. 用电位差计测量电动势有何优缺点?并与电压表的测量进行比较并说明。
2. 什么叫补偿法?它有何优点?
3. 在使用电位差计进行测量前,必须先对电位差计进行校准,为什么?实验仪器
十一线电位差计;标准电池;1#电
池;检流计;箱式电位差计;稳压电源。
实验原理一、补偿原理
用电压表无法测量电源的电动势。
如图所示的电路中,电压表所测的是电源的端
图
电压u。
仅在I=0时,端电压u才等于电动势Ex,但只要电压表与电源一并联接,I就不可能为零,故欲测电源电动势,应采用其它的方法。
电位差计是将待测电动势与标准电动势进行比较测量的仪器。
它的基本原理如图所示。
设E0为一连续可调的标准电源电动势,而EX为待测电动势。
若调节E0,使流过检流计G中电流为零(即回路中电流I=0),则E0=EX。
上述过程的实质是,不断地用已知的标准电动势E0与EX比较,直到检流计指示电路中电流为零时,说明二者已相等。
电路呈这种状态,称为补偿状态。
这种方法称为补偿法。
二、电位差计的工作原理
怎样才能获得连续可调的标准电动势E0,并如何与未知电动势进行比较呢?电位差计就是为达此目的而设计的一种测量仪器。
1. 基本结构
电位差计的基本线路如图和,电位差计型号不同,但它们基本都由三个回路组成。
下面就图做详细分析。
线式电位差计原理图箱式电位差计原理图
图
工作电流调节回路
它由高稳定度的电源E、限流电阻RP、标准电阻R1和R2以及开关K0组成。
校准回路
由标准电池E5、检流计G、标准电阻R1以及开关K1和K2组成。
测量回路
由待测电源EX ,标准电阻R2,检流计G,开关K2和K1组成。
分析图,平衡补偿在电位差计中是这样来实现的:利用工作电流回路RX上的压降
URX与待测电动势EX 进行比较,当改变RX的大小时,URX也随之变化,直到G指零时,即达到平衡补偿。
这时URX=EX,为了便于测量,要求仪器工作电流I恒等于某一定值,则在不同的RX处,可直接标出它相应的URX值。
这样在测量时一达到平衡补偿即可直接读出待测电动势。
因此,要使用电位差计,必须让工作电流调节到仪器所规定的数值,这步骤称为工作电流的校准。
2. 测量
工作电流的校准
如图,利用标准电池校准仪器的工作电流:调节RP使URS?ES,合上K0及K1,并将K2倒向S一边,则标准电池ES与工作回路并联。
调节RP使检流计G示零,此时电位差计达到平衡补偿,RS两端的电位差US?ES。
工作电流I校准完毕,它数值上等于ES/RS。
比较测量
保持工作电流I不变(即保持RP、R1、RS不变),把K2倒向X一边,调
节Rx直至检流计G指零,此时测量回路达到平衡补偿状态。
可从仪器上直接读出被测的EX(或UX)的值。
实验内容
一、利用线式电位差计测量干电池的电动势
线式电位差计结构简单,电阻丝长1l米,往复绕在木板的十一个接线插孔0、1、2、…、10上,每两个插孔横向相邻间电阻丝长为1米。
插头C可插入0~10中任一位置。
电阻丝BO旁附有最小分度为毫米的米尺,接头D可在其上滑动,使得CD间的电阻丝长度可在0~11米间连续变化。
RP为可变电阻,用来调节工作电流。
双刀转换开关K2用来选择接通标准电池ES还是待测电池EX。
电阻R1除用来保护标准电池和检流计外,还用来以提高测量的精度。
1. 接线。
接线时须断开所有开关,尤其要注意几个电源的正负极性,不可错接,RP调到最大值。
2. 校准工作电流。
首先选定电阻丝单位长度上的电压
降A伏/米,记下室温t,
求出室温下的标
准电池的电动势ES 伏,调节C、D 两活动接头,使C、D间电阻丝长度为LS?ES/A()例如,ES=,选定A=/m,则LS=;接通K1,将K2倒向ES 一边,调节RP,按一下滑动接头D,看检流计指针是否偏转,若偏转再重复该步骤,直到检流计的指针不再偏转。
按下K3使保护电阻短路,再次微调Rp使检流计G的指针无偏转,此时电阻丝上每米的电压降为伏。
记录ES、A、及LS。
3. 断开K3固定RP,即保持工作电流不变。
将K2倒向EX一边,活动接头D移至米尺左边“0”刻线处,按下接头D,同时移动插头C,找出使检流计指针偏转方向改变的两相邻插孔,接通K3,将C插在数字较小的插孔上,然后向右移动接头D,在G的指针不偏转时记下CD 间电阻丝的长度LX。
重复这一步骤三次,将相应实验数据记录。
根据
EX?ES
LXLS
??A2??L?2??L??
?ALX 及?EX?????X???EX?2XEX?2?A?LX ??? A??LX??LX
??
求出平均值及误差。
4. 确定误差方法。
由于检流计的灵敏度以及其它的原因,造成小于某一电流值时,检流计指针无法分辨有否电流,使得电阻丝上每米的电压降A存在误差△A,它可通过以下方法确定,若测得G 的指针开始向左偏转时CD间电阻丝的长度为L,开始向右偏时为L’,记录下L与L,则厶A/
’
A≈L?L/2LX
’
二、UJ31型电位差计测电池的端电压
在实际使用中,常将电位差计做成箱式的。
在线路上作了一些合理改进,
以便能直接读出待测电位差或电动势的数值。
UJ3l型电位差计面板图及测量电路图如、所示。
UJ31型电位差计测量电路图UJ31型电位差计原理图
图
1. 按图将外接的标准电池、检流计、工作电源和被测电动势按其极性与电位差计连接。
2. 测量前先校正检流计零位,K1档选择合适的量程。
再根据室温算出标准电池在该温度下的标准电动势,并依此将RNR调至相应位置,K2置于标准位置。
3. 校准工作电流:按下“粗”按钮,选调RP1 ,再调RP2,使G的指针无偏转。
再按下“细”按钮,用RP3来精确补偿至G无偏转,则电流得以校准。
4. 测量未知电动势:取RAD=RAB?RCD??,见表中的五组数据,测出五组
UCD的值。
保持RP不变,将K2置旋钮“未知1”或“未知2”,(根据自己接的位置定),依次调节测量转盘I、Ⅱ、Ⅲ,使电位差计处于补偿状态。
在调节中应先估计一下未知电动势的大小,并把测量转盘I置于估计数值上,然后先按下“粗”钮大致补偿后,再按下“细”钮精确补偿之。
使UCD的值是三个读数盘的读数相加值与K1的倍率的乘积。
注意:调节滑线读数盘Ⅲ时不允许逆时针旋过0mV处,也不允许顺时针旋过最大刻度处。
5. 计算待测电池两端的电压UAD,写出实验结果及误差分析。
UAD?UCD
RAD
RCD
表用箱式电位差计测电池端电压数据表
思考题
1. 在工作电流的实验过程中,如果检流计的指针总是向一边偏转,无法调到平衡,试分析其可能的原因。
---------------------------------精选公文范文--------------------------
2. 标准电池的极性接反,会出现什么现象?有何影响?
3. 使用箱式电位差计时,如UCD 值超出量程,会出现什么现象?
篇三:电位差计的原理及使用预习报告
实验预习报告
广东第二师范学院实验预习报告
2
3
----------------精选公文范文---------------- 11。