2013年1月石景山区期末高三数学(理科含答案)
- 格式:doc
- 大小:913.00 KB
- 文档页数:6
1页石景山区第一学期期末考试试卷高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后括号内.二、填空题:本大题共6个小题,每小题5分,共30分.把答案填在题中横线上.注:第11、14题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本题满分12分) 解:(Ⅰ)∵ 73tan =C , ∴ 73cos sin =CC. 又∵ 1cos sin 22=+C C , 解得 1cos 8C =±. ……………………3分 ∵ 0tan >C ,∴ C 是锐角.∴ 81cos =C . ………………………6分 (Ⅱ)∵ 25=⋅CA CB ,∴ 25cos =C ab . 解得 20=ab . …………………8分又∵ 9=+b a , ∴ 4122=+b a . ∴ 36cos 2222=-+=C ab b a c .∴ 6=c . ………………………12分16.(本题满分12分)解:(Ⅰ)a ax x x f ++='23)(2. ………………………2分由题意知⎩⎨⎧=+-=-'==623)1(2)0(a a f b f ,得⎩⎨⎧=-=23b a .…………………5分2页∴ 233)(23+--=x x x x f . ……………………6分(Ⅱ)023)(2=++='a ax x x f .∵ 3>a ,∴ 01242>-=∆a a .由0)(>'x f 解得332a a a x ---<或332aa a x -+->,由0)(<'x f 解得333322aa a x a a a -+-<<---. ……………10分∴ )(x f 的单调增区间为:)33,(2a a a ----∞和),33(2+∞-+-aa a ;)(x f 的单调减区间为: )33,33(22aa a a a a -+----.……12分 17.(本题满分14分)解法一:(Ⅰ)证明:∵ 面ABC ⊥面BCD ,︒=∠90BCD ,且面ABC 面BCD BC =,∴ ⊥CD 面ABC . ……………2分 又∵ ⊂AB 面ABC ,∴ AB DC ⊥. ………………4分(Ⅱ)解:如图,过点C 作CM ⊥AB 于M ,连结DM .由(Ⅰ)知⊥CD 面ABC .∴ CM 是斜线DM 在平面ABC 内的射影, ∴ AB DM ⊥.(三垂线定理)∴ CMD ∠是二面角C AB D --的平面角. …………………6分 设1=CD ,由︒=∠90BCD ,︒=∠30CBD 得3=BC ,2=BD .∵ ABC ∆是正三角形,CBD3页∴ 2323=⋅=BC CM . ∴ 32tan ==∠CM CD CMD . ∴ 32arctan =∠CMD .∴ 二面角C AB D --的大小为32arctan. …………………9分 (Ⅲ)解:如图,取三边AB 、AD 、BC 的中点M 、N 、O ,连结AO 、MO 、NO 、MN 、OD , 则AC OM //,AC OM 21=;BD MN //,BD MN 21=. ∴ OMN ∠是异面直线AC 与BD 所成的角或其补角. ………………11分 ∵ ABC ∆是正三角形,且平面⊥ABC 平面BCD , ∴ ⊥AO 面BCD ,AOD ∆是直角三角形,AD ON 21=. 又∵ ⊥CD 面ABC ,故2222==+=ON AC DC AD .在OMN ∆中,23=OM ,1=MN ,1=ON . ∴ 4321cos ==∠MN MOOMN . ∴ 异面直线AC 和BD 所成角为43arccos. ……………14分 解法二:(Ⅰ)分别取BC 、BD 的中点O 、M ,连结AO 、OM . ∵ ABC ∆是正三角形, ∴ BC AO ⊥.∵ 面ABC ⊥面BCD ,且面ABC 面BCD BC =, ∴ ⊥AO 平面BCD .∵ OM 是BCD ∆的中位线,且⊥CD 平面ABC ,。
3给出定义:若11< +22
m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题:
①=()y f x 的定义域是R ,值域是11(,]22
-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈;
③函数=()y f x 的最小正周期为1;
④ 函数=()y f x 在13(,]22
-上是增函数. 则上述命题中真命题的序号是 .
3.【答案】①③
【解析】①中,令11
,(,]22x m a a =+∈-,所以11()={}(,]22
f x x x a -=∈-。
所以正确。
②(2)=2{2}(){}()()f k x k x k x x x f x f x ----=---=-≠--,所以点(,0)k 不是函数()f x 的图象的对称中心,所以②错误。
③(1)=1{1}{}()f x x x x x f x ++-+=-=,所以周期为1,正确。
④令1,12x m =-=-,则11()22f -=,令1,02x m ==,则11()22f =,所以1
1()()22f f -=,所以函数=()y f x 在13(,]22
-上是增函数错误。
,所以正确的为①③ 【标题】北京市石景山区2013届高三上学期期末考试数学文(含解析)
【结束】。
2013年石景山区高三统一测试高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BADADCAC二、填空题:本大题共6个小题,每小题5分,共30分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:(Ⅰ)()sin(2)cos26f x x xπ=++sin 2coscos2sincos266x x x ππ=++33sin 2cos222x x =+ …………1分133(sin 2cos2)22x x =+3sin(2)3x π=+…………3分令+22+2232k x k πππππ-≤+≤5++1212k x k ππππ-≤≤ …………5分函数()f x 的单调递增区间5++()1212k k k Z ππππ⎡⎤-∈⎢⎥⎣⎦,. …………6分 题号 91011121314答案3712π 2013-29 22382n n -;(Ⅱ)由3()2f A =,1sin(2)=32A π+,因为A 为ABC ∆内角,由题意知203A π<<,所以52333A πππ<+< 因此5236A ππ+=,解得4A π=. …………8分 由正弦定理BbA a sin sin =,得6b =, …………10分 由4A π=,由3π=B ,可得62sin 4C +=,…………12分 ∴116233sin 262242s ab C ++==⨯⨯⨯=. …………13分16.(本小题满分13分)解:(Ⅰ)记“当天PM2.5日均监测数据未超标”为事件A ,243()105P A +==. …………2分 (Ⅱ)记“这两天此地PM2.5监测数据均未超标且空气质量恰好有一天为一级” 为事件B , 1124268()15C C P B C ⋅==. …………5分 (Ⅲ)ξ的可能值为0,1,2,3,363101(0)6C P C ξ=== ;21643101(1)2C C P C ξ⋅===; 12643103(2)10C C P C ξ⋅=== 343101(3)30C P C ξ=== …………9分 其分布列为:1131601+2+3=6210305E ξ=⨯+⨯⨯⨯ …………13分ξ0 1 2 3P16 12 310 13017.(本小题满分14分)证明:(I )在直角梯形ABCD 中,1,3AD AB ==所以2,23BD CD ==,所以BD CD ⊥. …………2分 又因为ABCD PD ⊥面,所以PD BD ⊥ 由PD BD D ⋂=,所以PCD BD ⊥面所以BD PC ⊥ …………4分 (II )如图,在平面ABCD 内过D 作直线DF //AB ,交BC 于F , 分别以DA 、DF 、DP 所在的直线为x 、y 、z 轴建立空间直角坐标系. 由条件知A (1,0,0),B (1,3,0),设P D a =,则(1,3,0),(3,3,)B D PC a =--=--, …………5分 由(I )知BD PDC DB PDC ⊥ 面就是平面的法向量,.(0,3,0),(1,3,0)A B D B == . 设A B P D C θ与面所成角大小为,则||33si n .2||||23D B A B D B A B θ⋅===⋅ …………7分 09060,θθ︒<<︒∴=︒ , 即直线A B P D C 与平面所成角为60︒. …………8分 (III )由(2)知C (-3,3,0),记P (0,0,a ),则030A B =(,,),(0,0,)D P a = ,P A a = (1,0,-),33P C a =-- (,,), 而P E P Cλ=,所以33P E a λλλ=- (,,), D E D P P E D P P C λ=+=+(0,0,)(33)a a λλλ=+--,,=33,.aa λλλ--(,)…………10分PEFB C DAGxy z设n x y z = (,,)为平面P AB 的法向量,则00A B n P A n ⎧⋅=⎪⎨⋅=⎪⎩,即300y x az ⎧=⎪⎨-=⎪⎩,即0y x a z =⎧⎨=⎩. 1z x a ==取,得,进而,,n a =(01), …………12分 由//D E P A B 平面,得0D En ⋅= ,∴30a a a λλ+=--,10.4a λ≠∴=而,…………14分 18.(本小题满分13分) 解:(Ⅰ)在区间()0,+∞上,11()ax f x a x x-'=-=. ……………………1分 ①若0a ≤,则()0f x '<,()f x 是区间()0,+∞上的减函数; ……………3分 ②若0a >,令()0f x '=得1x a=. 在区间1(0,)a上, ()0f x '<,函数()f x 是减函数;在区间1(,)a+∞上, ()0f x '>,函数()f x 是增函数; 综上所述,①当0a ≤时,()f x 的递减区间是()0,+∞,无递增区间;②当0a >时,()f x 的递增区间是1(,)a +∞,递减区间是1(0,)a. …………6分 (II )因为函数)(x f 在1=x 处取得极值,所以(1)0f '=解得1=a ,经检验满足题意. …………7分由已知()2,f x bx ≥-则1ln ()2,1x f x bx b x x ≥-+-≥ …………………8分 令x xx x g ln 11)(-+=,则22211ln ln -2()x x g x x x x -'=--=…………………10分易得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增, …………………12分 所以22min 11)()(e e g x g -==,即211b e ≤-. …………13分 19.(本小题满分14分)解:(Ⅰ)连接1AF ,因为2AF AB ⊥,211F F BF =,所以112AF F F =,即2a c =,故椭圆的离心率21=e ................3分 (Ⅱ)由(Ⅰ)知,21=a c 得a c 21=于是21(,0)2F a ,3(,0)2a B -,Rt ABC ∆的外接圆圆心为11(,0)2F a -),半径21||2r F B a ==............4分由已知圆心到直线的距离为a ,所以a a =--2|321|,解得2,1,3a c b =∴==所求椭圆方程为13422=+y x . ................6分 (Ⅲ)由(Ⅱ)知)0,1(2F , 设直线l 的方程为:(1)y k x =-⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 消去y 得01248)43(2222=-+-+k x k x k . ....7分 因为l 过点2F ,所以0∆>恒成立 设),(11y x M ,),(22y x N则2221438kk x x +=+, 121226(2)34k y y k x x k -+=+-=+ MN 中点22243(,)3434k k k k -++ ...............9分当0k =时,MN 为长轴,中点为原点,则0m = ..............10分当0k ≠时MN 中垂线方程222314()3434k k y x k k k +=--++. 令0y =,43143222+=+=∴kkk m .........12分 230k >,2144k +>, 可得410<<∴m 综上可知实数m 的取值范围是1[0,)4. ..............14分20.(本小题满分13分)解:(Ⅰ)数列}{n x 具有性质P ,数列}{n y 不具有性质P .对于数列}{n x ,若)2,2(1-A 则)2,2(2A ;若)2,2(1--A 则)2,2(2-A ;所以具有性质P .对于数列}{n y ,当)3,2(1-A 若存在),(2y x A 满足21OA OA ⊥,即032=+-y x ,即32=x y ,数列}{n y 中不存在这样的数y x ,,因此不具有性质P . ………………3分 (Ⅱ)(1)取),(1k k x x A ,又数列}{n x 具有性质P ,所以存在点),(2j i x x A 使得21OA OA ⊥,即0=+j k i k x x x x ,又0≠k x ,所以0=+j i x x . ………………5分(2)由(1)知,数列}{n x 中一定存在两项j i x x ,使得0=+j i x x ;又数列}{n x 是单调递增数列且02>x ,所以1为数列}{n x 中的一项.假设12≠x ,则存在),2(*∈<<N k n k k 有1=k x ,所以102<<x此时取),(21n x x A ,数列}{n x 具有性质P ,所以存在点),(2s t x x A 使得21OA OA ⊥,所以02=+s n t x x x x ;只有01<x ,所以当1-=t x 时22x x x x x s s n ≥>=,矛盾; 当1-=s x 时12≥=tnx x x ,矛盾.所以12=x . …………9分 (Ⅲ)由(Ⅱ)知,12=x .若数列}{n x 只有2013项且具有性质P ,可得44=x ,85=x 猜想数列}{n x 从第二项起是公比为2的等比数列.(用数学归纳法证明).所以222122242112012201220112013-=--=+++++-= S …………13分【注:若有其它解法,请酌情给分】。
石景山区2013—2014学年第一学期期末考试试卷高三数学(理科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}2230M x x x =∈+-≤R ,{}10N x x =∈+<R ,那么M N = ( )A .{101}-,,B .{321}---,,C .{11}x x -≤≤D .{31}x x -≤<-2.复数1ii =-( ) A .122i + B .122i -C .122i-+ D .122i -- 3.已知向量(1)x =,a ,(4)x =,b ,则“2x =”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知数列}{n a 为等差数列,4724a a ==-,,那么数列}{n a 通项公式为( ) A .210n a n =-+ B .25n a n =-+ C .1102n a n =-+ D .152n a n =-+5.执行如图所示的程序框图,若输入的x 的值为2,则输出的x 的值为( )A .3B .126C .127D .1286. 在边长为1的正方形OABC 中任取一点P ,则点P 恰好落在正方形与曲线y x =围成的区域内(阴影部分)的概率为( )A .12B .23 C .34D .45是 输入x21x x =-126x ≥输出x 开始 结束否OCxyy x =AB7.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .6488.已知函数()f x 满足1()1(1)f x f x +=+,当[01]x ∈,时,()f x x =,若在区间(11]-,上方程()0f x mx m --=有两个不同的实根,则实数m 的取值范围是( )A .1[0)2,B .1[)2+∞,C .1[0)3,D .1(0]2,第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知圆C 的参数方程为12cos 2sin x y θθ+⎧⎨=⎩,,=(θ为参数),则圆C 的直角坐标方程为_______________,圆心C 到直线:10l x y ++=的距离为______.10.在ABC ∆中,角A B C ,,的对边分别为a b c ,,,若=6a ,4c =,1cos =3B ,则b =______. 11. 若x ,y 满足约束条件1020x y x y ≤⎧⎪≥⎨⎪-+≥⎩,,,则z x y =+的最大值为 .12.如图,已知在ABC ∆中,o 90B ∠=,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切 于点D ,2AD =,1AE =,则AB 的长为 ,CD 的长为 .13.已知抛物线24y x =的焦点为F ,准线为直线l ,过抛物线上一点P 作PE l ⊥于E ,若直线EF 的倾斜角为o150,则||PF =______.14. 已知四边形ABCD 是边长为1的正方形,且1A A ⊥平面ABCD ,P 为1A A 上动点,过BD 且垂直于PC 的平面交PC 于E ,那么异面直线PC 与BD 所成的角的度数为 ,当三棱锥E BCD -的体积取得最大值时, 四棱锥P ABCD -的高PA 的长为 .A DCBE.OA 1ABDCPE三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()23sin cos cos 21f x x x x =++()x ∈R . (Ⅰ)求函数)(x f 的单调递增区间; (Ⅱ)求函数()f x 在44ππ⎡⎤-⎢⎥⎣⎦,上的最小值,并写出()f x 取最小值时相应的x 值.16.(本小题满分13分)北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为100分,规定测试成绩在[85100],之间为体质优秀;在[7585),之间为体质良好;在[6075),之间为体质合格;在[060),之间为体质不合格.现从某校高三年级的300名学生中随机抽取30名学生体质健康测试成绩,其茎叶图如下:9 1 3 5 68 0 1 1 2 2 3 3 3 4 4 5 6 6 7 7 9 7 0 5 6 6 7 9 6 4 5 8 5 6(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上30名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取5名学生,再从这5名学生中选出3人.(ⅰ)求在选出的3名学生中至少有1名体质为优秀的概率;(ⅱ)记X 为在选出的3名学生中体质为良好的人数,求X 的分布列及数学期望.17.(本小题满分14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,o 90ABC ∠=,AD ∥BC ,且2PA AD ==,1AB BC ==,E 为PD 的中点.(Ⅰ)求证:CD ⊥平面PAC ; (Ⅱ)求二面角E AC D --的余弦值;(Ⅲ)在线段AB 上是否存在一点F (不与A B ,两点重合),使得AE ∥平面PCF ?若存在,求出AF 的长;若不存在,请说明理由.A PEBDC18.(本小题满分13分)已知函数()xf x e ax =-(e 为自然对数的底数).(Ⅰ)当2a =时,求曲线()f x 在点(0(0))f ,处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)已知函数()f x 在0x =处取得极小值,不等式()f x mx <的解集为P ,若1{|2}2M x x =≤≤,且M P ≠∅ ,求实数m 的取值范围.19.(本小题满分14分)已知椭圆C :22221x y a b +=(0a b >>)过点(20),,且椭圆C 的离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M N ,两点,且MP PN =,再过P 作直线l MN ⊥.证明:直线l 恒过定点,并求出该定点的坐标.20.(本小题满分13分)已知集合{101}A =-,,,对于数列{}n a 中(123)i a A i n ∈= ,,,,. (Ⅰ)若50项数列{}n a 满足5019ii a==-∑,5021(1)107i i a =-=∑,则数列{}n a 中有多少项取值为零?(121nin i aa a a n *==+++∈∑N ,)(Ⅱ)若各项非零数列{}n a 和新数列{}n b 满足11i i i b b a ---=(23i n = ,,,). (ⅰ)若首项10b =,末项1n b n =-,求证数列{}n b 是等差数列;(ⅱ)若首项10b =,末项0n b =,记数列{}n b 的前n 项和为n S ,求n S 的最大值和最小值.石景山区2013—2014学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案DCAA CBBD二、填空题共6小题,每小题5分,共30分.(两空的题目第一空2分,第二空3分) 三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)()f x 3sin 2cos 2+1x x =+ …………2分 2sin 2+16x π=+(), ……………4分222262k x k πππππ-≤+≤+,k ∈Z , 36k x k ππππ-≤≤+,k ∈Z ,……6分所以函数)(x f 的单调递增区间为[]36k k ππππ-+,()k ∈Z . ……………7分(Ⅱ)因为44x ππ-≤≤,22363x πππ-≤+≤, ……………9分3sin(2)126x π-≤+≤,312sin 2+136x π-+≤+≤(), ……11分 所以当2=63x ππ+-,即=4x π-时,函数)(x f 取得最小值31-+.…………13分16.(本小题共13分)解:(Ⅰ)根据抽样,估计该校高三学生中体质为优秀的学生人数有10300=10030⨯人.…………3分 (Ⅱ)依题意,体质为良好和优秀的学生人数之比为 15:103:2=.所以,从体质为良好的学生中抽取的人数为3535⨯=,从体质为优秀的学生中抽取的人数为2525⨯=.…6分 (ⅰ)设“在选出的3名学生中至少有1名体质为优秀”为事件A ,则 3335C 9()1C 10P A =-=. 故在选出的3名学生中至少有1名体质为优秀的概率为910.…9分 (ⅱ)解:随机变量X 的所有取值为123,,.123235C C 3(1)C 10P X ⋅===,213235C C 6(2)C 10P X ⋅===,3335C 1(3)C 10P X ===.…………12分 题号 9 1011 12 13 14答案 22(1)4x y -+=,2 64 4,34390 ,2所以,随机变量X 的分布列为:X 123 P31061011036191231010105EX =⨯+⨯+⨯=. ……………13分 17.(本小题共14分) (Ⅰ)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥. ……………1分 取AD 的中点G ,连结GC ,因为底面ABCD 为直角梯形,AD ∥BC ,o90ABC ∠=,且1AB BC ==, 所以四边形ABCG 为正方形,所以CG AD ⊥,且1=2CG AD , 所以o=90ACD ∠,即AC CD ⊥. ……………3分 又PA AC A = , 所以CD ⊥平面PAC . ……………4分(Ⅱ)解:如图,以A 为坐标原点,AB AD AP ,,所在直线分别为x y z ,,轴建立空间直角坐标系xyz A -.…5分则(000)A ,,,(110)C ,,,(011)E ,,,(002)P ,,,所以(002)AP = ,,,(110)AC = ,,,(011)AE =,,. 因为PA ⊥平面ABCD ,所以(002)AP =,,为平面ACD 的一个法向量. ………6分 设平面EAC 的法向量为1()n x y z = ,,,由10n AC ⋅= ,10n AE ⋅= 得00x y y z +=⎧⎨+=⎩,,令1x =,则1y =-,1z =,所以1(111)n =-,,是平面EAC 的一个法向量. ……………8分 所以12221(1)0123cos 31(1)12n AP ⨯+-⨯+⨯<>==+-+⋅ 0, 因为二面角E AC D --为锐角,A PEBDCG DA PBCzyxE所以二面角E AC D --的余弦值为33. ……………9分 (Ⅲ)解:假设在线段AB 上存在点F (不与A B ,两点重合),使得AE ∥平面PCF .设(00)F a ,,,则(110)CF a =-- ,,,(112)CP =--,,. 设平面PCF 的法向量为2()n x y z =,,, 由20n CF ⋅= ,20n CP ⋅= 得(1)020a x y x y z --=⎧⎨--+=⎩,,令1x =,则1y a =-,2az =, 所以2(11)2a n a =- ,,是平面PCF 的一个法向量.………12分因为AE ∥平面PCF ,所以20AE n ⋅= ,即(1)02aa -+=, ……………13分解得23a =,所以在线段AB 上存在一点F (不与A B ,两点重合),使得AE ∥平面PCF ,且2=3AF . ……14分 18.(本小题共13分)解:(Ⅰ)当2a =时,()2x f x e x =-,(0)1f =, ()2xf x e '=-,得(0)1f '=-, ……2分所以曲线()f x 在点(0(0))f ,处的切线方程为1y x =-+. ……………3分 (Ⅱ)()xf x e a '=-.当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间为()-∞+∞,,无单调递减区间;………5分 当0a >时,(ln )x a ∈-∞,时,()0f x '<,(ln )x a ∈+∞,时,()0f x '>, 此时()f x 的单调递增区间为(ln )a +∞,,单调递减区间为(ln )a -∞,.………7分 (Ⅲ)由题意知(0)0f '=得1a =,经检验此时()f x 在0x =处取得极小值. ………8分因为M P ≠∅ ,所以()f x mx <在1[2]2,上有解,即1[2]2x ∃∈,使()f x mx <成立,………9分即1[2]2x ∃∈,使x e x m x ->成立, …………10分 所以min ()x e x m x ->. 令()1x e g x x =-,2(1)()xx e g x x -'=, DA PB C zyx EF所以()g x 在1[1]2,上单调递减,在[12],上单调递增, 则min ()(1)1g x g e ==-, ……………12分 所以(1)m e ∈-∞,+. ……………13分 19.(本小题共14分)解:(Ⅰ)因为点(20),在椭圆C 上,所以22401a b+=, 所以24a =, …………1分 因为椭圆C 的离心率为12, 所以12c a =,即22214a b a -= ,…………2分 解得23b =, ……………4分所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)设0(1)P y -,,033()22y ∈-,, ①当直线MN 的斜率存在时,设直线MN 的方程为0(1)y y k x -=+,11()M x y ,,22()N x y ,, 由2203412(1)x y y y k x ⎧+=⎨-=+⎩,,得22222000(34)(88)(48412)0k x ky k x y ky k ++++++-=, ………7分所以2012288+34ky k x x k +=-+, ……………8分 因为MP PN = ,即P 为MN 中点,所以12=12x x +-,即20288=234ky k k +--+. 所以003(0)4MN k y y =≠, ……………9分 因为直线l MN ⊥, 所以043l y k =-,所以直线l 的方程为004(1)3yy y x -=-+, 即041()34y y x =-+ ,显然直线l 恒过定点1(0)4-,. ………11分②当直线MN 的斜率不存在时,直线MN 的方程为1x =-, 此时直线l 为x 轴,也过点1(0)4-,. ……………13分 综上所述直线l 恒过定点1(0)4-,. ……………14分 20.(本小题共13分)解:(Ⅰ)设数列{}n a 中项为110-,,分别有x y z ,,项.由题意知5094107x y z x y z y ++=⎧⎪-=-⎨⎪+=⎩,,,解得11z =.所以数列{}n a 中有11项取值为零. ……………3分 (Ⅱ)(ⅰ){11}i a ∈-,且11i i i b b a ---=,得到121(23)i i b a a a i n -=+++= ,,,, 若1(121)i a i n ==- ,,,,则满足1n b n =-. 此时11i i b b --=,数列{}n b 是等差数列;若121n a a a - ,,,中有*(0)p p p >∈,N 个1-,则121n b n p n =--≠-不满足题意; 所以数列{}n b 是等差数列. ……………7分 (ⅱ)因为数列{}n b 满足11i i i b b a ---=,所以121(23)i i b a a a i n -=+++= ,,,, 根据题意有末项0n b =,所以1210n a a a -+++= .而{11}i a ∈-,,于是n 为正奇数,且121n a a a - ,,,中有12n -个1和12n -个1-. 12112121()()n n n S b b b a a a a a a -=+++=+++++++121(1)(2)n n a n a a -=-+-++要求n S 的最大值,则只需121n a a a - ,,,前12n -项取1,后12n -项取1-, 所以2max(1)()(2)(4)14n n S n n -=-+-++=(n 为正奇数). 要求n S 的最小值,则只需121n a a a - ,,,前12n -项取1-,后12n -项取1, 则2min(1)()(2)(4)14n n S n n -=------=-(n 为正奇数). …………13分【注:若有其它解法,请酌情给分.】。
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:立体几何一、选择题1 .(2013届北京大兴区一模理科)已知平面βα,,直线nm,,下列命题中不.正确的是()A.若α⊥m,β⊥m,则α∥βB.若m∥n,α⊥m,则α⊥nC.若m∥α,n=βα ,则m∥nD.若α⊥m,β⊂m,则βα⊥.2 .(2013届北京海滨一模理科)设123,,l l l为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:①i iA l∃∈(1,2,3)i=,使得123A A A∆是直角三角形;②i iA l∃∈(1,2,3)i=,使得123A A A∆是等边三角形;③三条直线上存在四点(1,2,3,4)iA i=,使得四面体1234A A A A为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的序号是()A.①B.①②C.①③D.②③3 .(2013届北京市延庆县一模数学理)一四面体的三视图如图所示,则该四面体四个面中最大的面积是()A.2B.22C.3D.324 .(2013届北京西城区一模理科)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.6B.12(7题图)轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分6 .(2013届房山区一模理科数学)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()A.B.8C.D.837 .(2013届门头沟区一模理科)一个几何体的三视图如右图所示,则该几何体的体积是()A.21B.13C.65D.18 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A.B.C.D.9 .(北京市东城区普通校2013届高三3月联考数学(理)试题)平面α∥平面β的一个充分条件是()A.存在一条直线a aααβ,∥,∥B.存在一条直线a a aαβ⊂,,∥C.存在两条平行直线a b a b a bαββα⊂⊂,,,,∥,∥D.存在两条异面直线a b a b a bαββα⊂⊂,,,,∥,∥10.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为1()A.43πB.2πC.83πD.103π正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图主视图左视图俯视图11.(北京市西城区2013届高三上学期期末考试数学理科试题)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )A.B.C.D.12.(北京市通州区2013届高三上学期期末考试理科数学试题 )一个几何体的三视图如图所示,该几何 体的表面积是( )A.16+B.12+C.8+D.4+13.(北京市丰台区2013届高三上学期期末考试 数学理试题 )如图,正(主)视图 侧(左)视图俯视图直角三角形,则该三棱锥的四个面的面积中最大的是()A B.C.1 D.214.(北京市昌平区2013届高三上学期期末考试数学理试题)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为()A.10+B.10+.14+D.14+15.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为()A B C.34D.116.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )在棱长为1的正方体1111ABCD A BC D -中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 ( )A .124 B .112C .16D .1217.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ18.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )某三棱锥的三视图如图所示,该三棱锥的体积是 ( )A .38B .4C .2D .3419.(北京市房山区2013届高三上学期期末考试数学理试题 )若正三棱柱的三视图如图所示,该三棱柱的表面积是( )A.C.6+二、填空题20.(2013届北京丰台区一模理科)某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是_______.21.(北京市东城区2013届高三上学期期末考试数学理科试题)一个几何体的三视图如图所示,则该几何体的表面积为 .22.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.23.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<),记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值). 三、解答题24.(2013届北京大兴区一模理科)如图,直三棱柱ABC —A 1B 1C 1中,ABC D 是等边三角形,D 是BC 的中点.(Ⅰ)求证:A 1B //平面ADC 1;(Ⅱ)若AB=BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.25.(2013届北京丰台区一模理科)如图,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ∥MD ,且NB=1,MD=2;(Ⅰ)求证:AM ∥平面BCN;(Ⅱ)求AN 与平面MNC 所成角的正弦值;(Ⅲ)E 为直线MN 上一点,且平面ADE ⊥平面MNC ,求MEMN的值..26.(2013届北京海滨一模理科)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4PA AB ==,120CDA ∠= ,点N 在线段PB 上,且PN =(Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ; (Ⅲ)求二面角A PC B --的余弦值.ABCD P -的底面27.(2013届北京市延庆县一模数学理)如图,四棱锥ABCD 为菱形, 60=∠ABC ,侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD .(Ⅰ)设AB 的中点为Q ,求证:⊥PQ 平面ABCD (Ⅱ)求斜线PD 与平面ABCD 所成角的正弦值;(Ⅲ)在侧棱PC 上存在一点M ,使得二面角C BD M --的大小为 60,求CPCM的值.28.(2013届北京西城区一模理科)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.29.(2013届东城区一模理科)如图,已知ACDE 是直角梯形,且//ED AC ,平面ACDE ⊥平面ABC ,90BAC ACD ∠=∠=︒,AB AC AE ==2=,12ED AB =, P 是BC 的中点. (Ⅰ)求证://DP 平面EAB ;(Ⅱ)求平面EBD 与平面ABC 所成锐二面角大小的余弦值.30.(2013届房山区一模理科数学)在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD , ABCD 为直角梯形,BC //AD ,90ADC ∠=︒,112BC CD AD ===,PA PD =,E F ,为AD PC,的中点.(Ⅰ)求证:P A //平面BEF ;(Ⅱ)若PC 与AB 所成角为45︒,求PE 的长;(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A 的余弦值.31.(2013届门头沟区一模理科)在等腰梯形ABCD 中,//AD BC ,12AD BC =,60ABC ∠= ,N 是BC 的中点.将梯形ABCD 绕AB 旋转90 ,得到梯形ABC D ''(如图).(Ⅰ)求证:AC ⊥平面ABC '; (Ⅱ)求证://C N '平面AD D '; (Ⅲ)求二面角A C N C '--的余弦值.DFECBAPADD 'C '32.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )(本小题满分13分) 在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点.(1)求证:PC AD ⊥;(2)求证://FG 平面BCP ;(3)线段AD 上是否存在一点R ,使得平面⊥BPR 平面PCB ,若存在,求出AR 的长;若不存在,请说明理由.33.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知几何体A —BCED 的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角 三角形,正视图为直角梯形. (Ⅰ)求此几何体的体积V 的大小;(Ⅱ)求异面直线DE 与AB 所成角的余弦值; (Ⅲ)试探究在棱DE 上是否存在点Q ,使得 AQ ⊥BQ ,若存在,求出DQ 的长,不存在说明理由.侧视图俯视图正视图F G P D CB A34.(北京市东城区2013届高三上学期期末考试数学理科试题)如图,在菱形ABCD 中,60DAB ∠=,E 是AB的中点, MA ⊥平面ABCD ,且在矩形ADNM中,2AD =,7AM =. (Ⅰ)求证:AC ⊥BN ;(Ⅱ)求证:AN // 平面MEC ; (Ⅲ)求二面角M EC D --的大小.学)如35.(北京市海淀区北师特学校2013届高三第四次月考理科数图所示,正方形D D AA 11与矩形ABCD 所在平面互相垂直,22==AD AB ,点E 为AB 的中点。
石景山区2012—2013学年第一学期期末考试高三数学(文)参考答案一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分)三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2s i n s i n +c o s =2s i n +s i n 2x x x x x =2 s i n (2-)14x π=+ ……………5分π=T ……………7分 (Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分当2--42x ππ=时,即8x π=-时,)(x f 的最小值为. ………13分16.(本小题共14分)(Ⅰ)证明:11//,,DE BC DE A DE BC A DE ⊂⊄ 面面1//BC A DE ∴面 …………………………4分(Ⅱ)证明: 在△ABC 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D DE ∴⊥.又11,,A D CD CD DE D A D BCDE ⊥⋂=∴⊥面.由1,.BC BCDE A D BC ⊂∴⊥面1,,BC CD CD BC C BC A DC ⊥⋂=∴⊥面. …………………………9分(Ⅲ)设DC x =则16A D x =-由(Ⅱ)知,△1ACB ,△1A DC 均为直角三角形.1A B =1A B ==………………12分当=3x 时,1A B 的最小值是即当D 为AC 中点时, 1A B 的长度最小,最小值为14分 17.(本小题共13分)(Ⅰ)设A 表示事件“抽取3张卡片上的数字之和大于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1,2,3),(1,2,4),(1,3,4),(2,3,4). 其中数字之和大于7的是(1,3,4),(2,3,4), 所以1()2P A =. …………………6分 (Ⅱ)设B 表示事件“至少一次抽到3”,第一次抽1张,放回后再抽取一张卡片的基本结果有: (1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4),共16个基本结果.事件B 包含的基本结果有(1,3)(2,3)(3,1)(3,2)(3,3)(3,4)(4,3), 共7个基本结果.所以所求事件的概率为7()16P B =. …………………13分18.(本小题共13分) (Ⅰ)1()=f x a x'- …………………2分 (1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………4分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x ''--, 解得(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………9分 (Ⅲ)=()y f x 有零点,即()=ln +1=0f x x ax -有解,ln +1=x a x. 令 ln +1()=x g x x ,22ln +11(ln +1)ln ()=()==x x xg x x x x-''-, 解()=0g x '得=1x . …………………11分则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减, 当=1x 时,()g x 的最大值为(1)=1g ,所以1a ≤. …………………13分19.(本小题共14分)(Ⅰ)由题意知, 2a =2e =,解得a b c 故椭圆方程为221205x y +=. …………………4分 (Ⅱ)将y x m =+代入221205x y +=并整理得22584200x mx m ++-=,22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分 (Ⅲ)设直线,MA MB 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y ,则212128420,55m m x x x x -+=-=. …………………9分 12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线MA MB 、的斜率互为相反数. …………………14分 20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列.因为1k >,显然有12()()()n n n f a f a f a ++<<< , 由12()()()n n n f a f a f a +++>得12nn n k kk +++>k <所以当k ∈时, ()x f x k =是数列{}n a 的保三角形函数. …………………3分(Ⅱ)由1438052n n s s +-=,得1438052n n s s --=,两式相减得1430n n c c +-=,所以1320134n n c -⎛⎫= ⎪⎝⎭…………………5分经检验,此通项公式满足1438052n n s s +-=.显然12n n n c c c ++>>,因为1112332132013201344164nn n n n n c c c +-+++==⋅>()+2013()(), 所以{}n c 是三角形数列. …………………8分(Ⅲ)133()lg[2013]=lg2013+(n-1)lg 44n n g c -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以(n g c )是单调递减函数.由题意知,3lg2013+(n-1)lg >04⎛⎫⎪⎝⎭①且12lg lg lg n n n c c c --+>②,由①得3-1lg >-lg 20134n (),解得27.4n <, 由②得3lg>-lg 20134n ,解得26.4n <. 即数列{}n b 最多有26项. …………………13分 【注:若有其它解法,请酌情给分.】。
石景山区2012—2013学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( )A . {}2,1B . {}4,32,C . {}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( ) A . 13i --B .i +2C .13i +D .i +33.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD 则===( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4. 设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ5.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .46.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种7.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .38 B .4 C .2 D .348. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k , 即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论: ① []20133∈; ② []22-∈;③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”. 其中,正确结论的个数为( ).A .1B .2C .3D .4正(主)视图 侧(左)视图俯视图22 3231开始 输出y 输入x否是结束>2x2=-1y x 2=log y x第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 . 10.如右图,从圆O 外一点P 引圆O 的割线PAB 和PCD ,PCD 过圆心O ,已知1,2,3PA AB PO ===,则圆O 的半径等于 . 11.在等比数列{}n a 中,141=,=42a a -,则公比=q ;123++++=n a a a a L .12. 在ABC ∆中,若2,60,7a B b =∠=︒=,则BC 边上的高等于 .13.已知定点A 的坐标为(1,4),点F 是双曲线221412x y -=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 .14. 给出定义:若11< +22m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题: ①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为1; ④ 函数=()y f x 在13(,]22-上是增函数. 则上述命题中真命题的序号是 .PA BCO•D三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: BC ⊥平面1A DC ;(Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.A BCD E图1图2A 1B CDE甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1123p 、、,且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望EX .18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)讨论函数=()y f x 零点的个数.19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点(4,1)M ,直线:=+l y x m 交椭圆于不同的两点A B 、.(Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不过点M ,求证:直线MA MB 、的斜率互为相反数.定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)石景山区2012—2013学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BADCCABC二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分) 三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2s i n s i n +c o s =2s i n +s i n 2x x x x x =2 2s i n (2-)14x π=+ ……………5分π=T ……………7分 (Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分当2--42x ππ=时,即8x π=-时,)(x f 的最小值为-2+1. ………13分16.(本小题共14分)(Ⅰ)证明: 在△ABC 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D DE ∴⊥.又11,,A D CD CD DE D A D BCDE ⊥⋂=∴⊥面.题号 9 10111213 14 答案2;6611222n ;---3329①③由1,.BC BCDE A D BC ⊂∴⊥面1,,BC CD CD BC C BC A DC ⊥⋂=∴⊥面. …………………………4分(Ⅱ)如图,以C 为原点,建立空间直角坐标系. ……………………5分1(2,0,0),(2,2,0),(0,3,0),(2,0,4)D E B A .设(,,)x y z =n 为平面1A BC 的一个法向量,因为(0,3,0),CB =1(2,0,4)CA =所以30240y x z =⎧⎨+=⎩,令2x =,得=0,=1y z -. 所以(2,0,1)=-n 为平面1A BC 的一个法向量. ……………………7分设BE 与平面1A BC 所成角为θ.则44sin =cos 555BE θ<⋅>==⋅n . 所以BE 与平面1A BC 所成角的正弦值为45. …………………9分 (Ⅲ)设(,0,0)D x ,则1(,0,6)A x x -,2221(-0)(0-3)(6--0)A B x x =++22-1245x x =+ …………………12分当=3x 时,1A B 的最小值是33.即D 为AC 中点时, 1A B 的长度最小,最小值为33. …………………14分 17.(本小题共13分)记“甲、乙、丙三人各自破译出密码”分别为事件321,,A A A ,依题意有12311(),(),(),23P A P A P A p ===且321,,A A A 相互独立.(Ⅰ)甲、乙二人中至少有一人破译出密码的概率为A 1BCD Exzy121()P A A -⋅1221233=-⨯=. …………………3分(Ⅱ)设“三人中只有甲破译出密码”为事件B ,则有()P B =123()P A A A ⋅⋅=121(1)233pp -⨯⨯-=, …………………5分 所以1134p -=,14p =. ……………………7分 (Ⅲ)X 的所有可能取值为3,2,1,0. ……………………8分所以1(0)4P X ==, (1)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅111312111423423424=+⨯⨯+⨯⨯=, (2)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅11312111112342342344=⨯⨯+⨯⨯+⨯⨯=, (3)P X ==P 123()A A A ⋅⋅=111123424⨯⨯= . ……………………11分X 分布列为:X 0 1 2 3 P14 1124 14 124……………………12分所以,1111113()012342442412E X =⨯+⨯+⨯+⨯=. ………………13分 2.(本小题共13分) (Ⅰ)1()=f x a x'- …………………1分 (1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………3分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x x x''--, 解得x)1 , 0(1) , 1(∞+()F x ' +-)(x F↗最大值↘…………………6分(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………8分(Ⅲ)令()=ln +1=0f x x ax -,ln +1=x a x. 令 ln +1()=x g x x ,22ln +11(ln +1)ln ()=()==x x xg x x x x -''-,则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减,当=1x 时,()g x 的最大值为(1)=1g .所以若>1a ,则()f x 无零点;若()f x 有零点,则1a ≤.………………10分若=1a ,()=ln +1=0f x x ax -,由(Ⅰ)知()f x 有且仅有一个零点=1x . 若0a ≤,()=ln +1f x x ax -单调递增,由幂函数与对数函数单调性比较,知()f x 有且仅有一个零点(或:直线=1y ax -与曲线=ln y x 有一个交点).若0<<1a ,解1()==0f x a x '-得1=x a ,由函数的单调性得知()f x 在1=x a处取最大值,11()=ln >0f a a,由幂函数与对数函数单调性比较知,当x 充分大时()<0f x ,即()f x 在单调递减区间1(,+)a ∞有且仅有一个零点;又因为1()=<0af e e -,所以()f x 在单调递增区间1(0)a,有且仅有一个零点.综上所述,当>1a 时,()f x 无零点; 当=1a 或0a ≤时,()f x 有且仅有一个零点;当0<<1a 时,()f x 有两个零点. …………………13分19.(本小题共14分)(Ⅰ)设椭圆的方程为22221x y a b +=,因为32e =,所以224a b =, 又因为(4,1)M ,所以221611a b+=,解得225,20b a ==, 故椭圆方程为221205x y +=. …………………4分 (Ⅱ)将y x m =+代入221205x y +=并整理得22584200x mx m ++-=, 22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分 (Ⅲ)设直线,MA MB 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y , 则212128420,55m m x x x x -+=-=. …………………9分 12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线MA MB 、的斜率互为相反数. …………………14分20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列。
石景山区2013—2014学年第一学期期末考试试卷高三数学(理科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}2230M x x x =∈+-≤R ,{}10N x x =∈+<R ,那么M N = ( )A .{101}-,,B .{321}---,,C .{11}x x -≤≤D .{31}x x -≤<-2.复数1ii =-( ) A .122i + B .122i -C .122i-+ D .122i -- 3.已知向量(1)x =,a ,(4)x =,b ,则“2x =”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知数列为等差数列,,那么数列通项公式为( )A .B .C .D .5.执行如图所示的程序框图,若输入的x 的值为2, 则输出的x 的值为( ) A .3 B .126 C .127 D .1286. 在边长为1的正方形OABC 中任取一点P ,则点P恰好落在正方形与曲线y =(阴影部分)的概率为( )A .12B .23C .34D .45OCy =B7.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .6488.已知函数满足,当时,,若在区间上方程有两个不同的实根,则实数的取值范围是( )A .B .C .D .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.已知圆C 的参数方程为12cos 2sin x y θθ+⎧⎨=⎩,,=(θ为参数),则圆C 的直角坐标方程为_______________,圆心C 到直线:10l x y ++=的距离为______.10.在ABC ∆中,角A B C ,,的对边分别为a b c ,,,若=6a ,4c =,1cos =3B ,则b =______. 11. 若x ,y 满足约束条件1020x y x y ≤⎧⎪≥⎨⎪-+≥⎩,,,则z x y =+的最大值为 .12.如图,已知在ABC ∆中,o 90B ∠=,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切 于点D ,2AD =,1AE =,则AB 的长为 ,CD 的长为 .13.已知抛物线24y x =的焦点为F ,准线为直线l ,过抛物线上一点P 作PE l ⊥于E ,若直线EF 的倾斜角为o150,则||PF =______.14. 已知四边形是边长为的正方形,且平面,为上动点,过且垂直于的平面交于,那么异面直线PC 与BD 所成的角的度数为 ,当三棱锥的体积取得最大值时, 四棱锥P ABCD -的高PA 的长为 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()cos cos 21f x x x x =++. (Ⅰ)求函数的单调递增区间;(Ⅱ)求函数在上的最小值,并写出取最小值时相应的值.A DCBE.OA 1ABDCPE北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为100分,规定测试成绩在[85100],之间为体质优秀;在[7585),之间为体质良好;在[6075),之间为体质合格;在[060),之间为体质不合格.现从某校高三年级的300名学生中随机抽取30名学生体质健康测试成绩,其茎叶图如下:9 1 3 5 68 0 1 1 2 2 3 3 3 4 4 5 6 6 7 7 9 7 0 5 6 6 7 9 6 4 5 8 5 6(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上30名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取5名学生,再从这5名学生中选出3人.(ⅰ)求在选出的3名学生中至少有1名体质为优秀的概率;(ⅱ)记X 为在选出的3名学生中体质为良好的人数,求X 的分布列及数学期望.17.(本小题满分14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,o 90ABC ∠=,AD ∥BC ,且2PA AD ==,1AB BC ==,E 为PD 的中点.(Ⅰ)求证:CD ⊥平面PAC ; (Ⅱ)求二面角E AC D --的余弦值;(Ⅲ)在线段AB 上是否存在一点F (不与A B ,两点重合),使得AE ∥平面PCF ?若存在,求出AF 的长;若不存在,请说明理由.18.(本小题满分13分)已知函数()xf x e ax =-(e 为自然对数的底数).(Ⅰ)当2a =时,求曲线()f x 在点(0(0))f ,处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)已知函数()f x 在0x =处取得极小值,不等式()f x mx <的解集为P ,若1{|2}2M x x =≤≤,且M P ≠∅ ,求实数m 的取值范围.A PEBDC已知椭圆:()过点(20),,且椭圆的离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且MP PN =,再过作直线.证明:直线恒过定点,并求出该定点的坐标.20.(本小题满分13分)已知集合,对于数列中. (Ⅰ)若50项数列{}n a 满足5019ii a==-∑,5021(1)107i i a =-=∑,则数列{}n a 中有多少项取值为零?(121nin i aa a a n *==+++∈∑N ,)(Ⅱ)若各项非零数列{}n a 和新数列{}n b 满足11i i i b b a ---=(). (ⅰ)若首项10b =,末项1n b n =-,求证数列{}n b 是等差数列;(ⅱ)若首项10b =,末项0n b =,记数列{}n b 的前n 项和为n S ,求n S 的最大值和最小值.石景山区2013—2014学年第一学期期末考试高三数学(理科)参考答案一、选择题共8二、填空题共6小题,每小题5分,共30分.(两空的题目第一空2分,第二空3分)三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)()f x 2cos 2+1x x =+ …………2分 2sin 2+16x π=+(), ……………4分222262k x k πππππ-≤+≤+,k ∈Z , 36k x k ππππ-≤≤+,k ∈Z , ………6分所以函数)(x f 的单调递增区间为[]36k k ππππ-+,()k ∈Z . ……………7分(Ⅱ)因为44x ππ-≤≤,22363x πππ-≤+≤,……………9分sin(2)16x π≤+≤, 12sin 2+136x π≤+≤(), ……………11分 所以当2=63x ππ+-,即=4x π-时,函数)(x f 取得最小值1.………13分则 3335C 9()1C 10P A =-=. 故在选出的3名学生中至少有名体质为优秀的概率为910.……9分(ⅱ)解:随机变量X 的所有取值为123,,.123235C C 3(1)C 10P X ⋅===,213235C C 6(2)C 10P X ⋅===,3335C 1(3)C 10P X ===. …………12分 所以,随机变量X 的分布列为:36191231010105EX =⨯+⨯+⨯=. ……………13分 17.(本小题共14分) (Ⅰ)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥. ……………1分 取AD 的中点G ,连结GC ,因为底面ABCD 为直角梯形,AD ∥BC ,o90ABC ∠=,且1AB BC ==,所以四边形ABCG 为正方形,所以CG AD ⊥,且1=2CG AD , 所以o=90ACD ∠,即AC CD ⊥. ……………3分 又PA AC A = ,所以CD ⊥平面PAC . ……………4分(Ⅱ)解:如图,以A 为坐标原点,AB AD AP ,,所在直线分别为x y z ,,轴建立空间直角坐标系xyz A -.………5分则(000)A ,,,(110)C ,,,(011)E ,,,(002)P ,,,所以(002)AP = ,,,(110)AC = ,,,(011)AE =,,. 因为PA ⊥平面ABCD ,所以(002)AP =,,为平面ACD 的一个法向量. ……6分 设平面EAC 的法向量为1()n x y z =,,,由10n AC ⋅= ,10n AE ⋅= 得00x y y z +=⎧⎨+=⎩,,令1x =,则1y =-,1z =,APEBDCG所以1(111)n =-,,是平面EAC 的一个法向量. ………8分所以1cos n AP <>== ,因为二面角E AC D --为锐角, 所以二面角E AC D --. ………9分 (Ⅲ)解:假设在线段AB 上存在点F (不与A B ,两点重合),使得AE ∥平面PCF . 设(00)F a ,,,则(110)CF a =-- ,,,(112)CP =--,,. 设平面PCF 的法向量为2()n x y z =,,, 由20n CF ⋅= ,20n CP ⋅= 得(1)020a x y x y z --=⎧⎨--+=⎩,,令1x =,则1y a =-,2az =,所以2(11)2a n a =- ,,是平面PCF 的一个法向量.…12分因为AE ∥平面PCF ,所以20AE n ⋅= ,即(1)02aa -+=, ……………13分解得23a =,所以在线段AB 上存在一点F (不与A B ,两点重合),使得AE ∥平面PCF ,且2=3AF .……14分 18.(本小题共13分)解:(Ⅰ)当2a =时,()2x f x e x =-,(0)1f =,()2xf x e '=-,得(0)1f '=-,………2分所以曲线()f x 在点(0(0))f ,处的切线方程为1y x =-+. ……………3分 (Ⅱ)()xf x e a '=-.当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间为()-∞+∞,,无单调递减区间;………5分 当0a >时,(ln )x a ∈-∞,时,()0f x '<,(ln )x a ∈+∞,时,()0f x '>, 此时()f x 的单调递增区间为(ln )a +∞,,单调递减区间为(ln )a -∞,.……7分 (Ⅲ)由题意知(0)0f '=得1a =,经检验此时()f x 在0x =处取得极小值. ………8分因为M P ≠∅ ,所以()f x mx <在1[2]2,上有解,即1[2]2x ∃∈,使()f x mx <成立,…9分即1[2]2x ∃∈,使x e x m x ->成立, …………10分所以min ()x e xm x->.令()1x e g x x =-,2(1)()x x e g x x -'=,所以()g x 在1[1]2,上单调递减,在[12],上单调递增, 则min ()(1)1g x g e ==-, ……………12分 所以(1)m e ∈-∞,+. ……………13分 19.(本小题共14分)解:(Ⅰ)因为点(20),在椭圆C 上,所以22401a b+=, 所以24a =, …………1分 因为椭圆C 的离心率为12, 所以12c a =,即22214a b a -= , …………2分 解得23b =, ……………4分所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)设0(1)P y -,,033()22y ∈-,, ①当直线MN 的斜率存在时,设直线MN 的方程为0(1)y y k x -=+,11()M x y ,,22()N x y ,, 由2203412(1)x y y y k x ⎧+=⎨-=+⎩,,得22222000(34)(88)(48412)0k x ky k x y ky k ++++++-=, ………7分所以2012288+34ky k x x k +=-+, ……………8分因为MP PN = ,即P 为MN 中点,所以12=12x x +-,即20288=234ky k k +--+. 所以003(0)4MN k y y =≠, ……………9分 因为直线l MN ⊥, 所以043l y k =-,所以直线l 的方程为004(1)3yy y x -=-+, 即041()34y y x =-+ ,显然直线l 恒过定点1(0)4-,. ……………11分②当直线MN 的斜率不存在时,直线MN 的方程为1x =-, 此时直线l 为x 轴,也过点1(0)4-,. ……………13分 综上所述直线l 恒过定点1(0)4-,. ……………14分20.(本小题共13分)解:(Ⅰ)设数列{}n a 中项为110-,,分别有x y z ,,项.由题意知5094107x y z x y z y ++=⎧⎪-=-⎨⎪+=⎩,,,解得11z =.所以数列{}n a 中有11项取值为零. ……3分 (Ⅱ)(ⅰ){11}i a ∈-,且11i i i b b a ---=,得到121(23)i i b a a a i n -=+++= ,,,, 若1(121)i a i n ==- ,,,,则满足1n b n =-.此时11i i b b --=,数列{}n b 是等差数列; 若121n a a a - ,,,中有*(0)p p p >∈,N 个1-,则121n b n p n =--≠-不满足题意; 所以数列{}n b 是等差数列. ……………7分(ⅱ)因为数列{}n b 满足11i i i b b a ---=,所以121(23)i i b a a a i n -=+++= ,,,, 根据题意有末项0n b =,所以1210n a a a -+++= .而{11}i a ∈-,,于是n 为正奇数,且121n a a a - ,,,中有12n -个1和12n -个1-. 12112121()()n n n S b b b a a a a a a -=+++=+++++++121(1)(2)n n a n a a -=-+-++要求n S 的最大值,则只需121n a a a - ,,,前12n -项取1,后12n -项取1-,所以2max(1)()(2)(4)14n n S n n -=-+-++=(n 为正奇数). 要求n S 的最小值,则只需121n a a a - ,,,前12n -项取1-,后12n -项取1, 则2min(1)()(2)(4)14n n S n n -=------=-(n 为正奇数). …………13分【注:若有其它解法,请酌情给分.】。
石景山区2013—2014学年第一学期期末考试试卷高三数学(理科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}2230M x x x =∈+-≤R ,{}10N x x =∈+<R ,那么MN =( )A .{101}-,,B .{321}---,,C .{11}x x -≤≤D .{31}x x -≤<-2.复数1ii =-( ) A .122i + B .122i -C .122i-+ D .122i -- 3.已知向量(1)x =,a ,(4)x =,b ,则“2x =”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知数列}{n a 为等差数列,4724a a ==-,,那么数列}{n a 通项公式为( )A .210n a n =-+B .25n a n =-+C .1102n a n =-+ D .152n a n =-+ 5.执行如图所示的程序框图,若输入的x 的值为2, 则输出的x 的值为( ) A .3 B .126 C .127 D .1286. 在边长为1的正方形OABC 中任取一点P ,则点P恰好落在正方形与曲线y =围成的区域内(阴影部分)的概率为( )A .12B .23C .34D .457.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .6488.已知函数()f x 满足1()1(1)f x f x +=+,当[01]x ∈,时,()f x x =,若在区间(11]-,上方程()0f x mx m --=有两个不同的实根,则实数m 的取值范围是( ) A .1[0)2, B .1[)2+∞,C .1[0)3,D .1(0]2,第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.已知圆C 的参数方程为12cos 2sin x y θθ+⎧⎨=⎩,,=(θ为参数),则圆C 的直角坐标方程为_______________,圆心C 到直线:10l x y ++=的距离为______.10.在ABC ∆中,角A B C ,,的对边分别为a b c ,,,若=6a ,4c =,1cos =3B ,则b =______. 11. 若x ,y 满足约束条件1020x y x y ≤⎧⎪≥⎨⎪-+≥⎩,,,则z x y =+的最大值为 .12.如图,已知在ABC ∆中,o 90B ∠=,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切A DCBE .OOCy =AB于点D ,2AD =,1AE =,则AB 的长为 ,CD 的长为 .13.已知抛物线24y x =的焦点为F ,准线为直线l ,过抛物线上一点P 作PE l ⊥于E ,若直线EF 的倾斜角为o 150,则||PF =______.14. 已知四边形ABCD 是边长为1的正方形,且1A A ⊥平面ABCD ,P 为1A A 上动点,过BD 且垂直于PC 的平面交PC于E ,那么异面直线PC 与BD 所成的角的度数为 ,当三棱锥E BCD -的体积取得最大值时, 四棱锥P ABCD -的高PA 的长为 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()cos cos 21f x x x x =++()x ∈R . (Ⅰ)求函数)(x f 的单调递增区间; (Ⅱ)求函数()f x 在44ππ⎡⎤-⎢⎥⎣⎦,上的最小值,并写出()f x 取最小值时相应的x 值.16.(本小题满分13分)北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为100分,规定测试成绩在[85100],之间为体质优秀;在[7585),之间为体质良好;在[6075),之间为体质合格;在[060),之间为体质不合格.现从某校高三年级的300名学生中随机抽取30名学生体质健康测试成绩,其茎叶图如下:9 1 3 5 68 0 1 1 2 2 3 3 3 4 4 5 6 6 7 7 9 7 0 5 6 6 7 9 65 85 6A 1ABDCPE(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上30名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取5名学生,再从这5名学生中选出3人.(ⅰ)求在选出的3名学生中至少有1名体质为优秀的概率;(ⅱ)记X 为在选出的3名学生中体质为良好的人数,求X 的分布列及数学期望.17.(本小题满分14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,o 90ABC ∠=,AD ∥BC ,且2PA AD ==,1AB BC ==,E 为PD 的中点.(Ⅰ)求证:CD ⊥平面PAC ; (Ⅱ)求二面角E AC D --的余弦值;(Ⅲ)在线段AB 上是否存在一点F (不与A B ,两点重合),使得AE ∥平面PCF ?若存在,求出AF 的长;若不存在,请说明理由.18.(本小题满分13分)已知函数()xf x e ax =-(e 为自然对数的底数).(Ⅰ)当2a =时,求曲线()f x 在点(0(0))f ,处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)已知函数()f x 在0x =处取得极小值,不等式()f x mx <的解集为P ,若1{|2}2M x x =≤≤,且M P ≠∅,求实数m 的取值范围.19.(本小题满分14分)A PEBDC已知椭圆C :22221x y a b +=(0a b >>)过点(20),,且椭圆C 的离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M N ,两点,且MP PN =,再过P 作直线l MN ⊥.证明:直线l 恒过定点,并求出该定点的坐标.20.(本小题满分13分)已知集合{101}A =-,,,对于数列{}n a 中(123)i a A i n ∈=,,,,. (Ⅰ)若50项数列{}n a 满足5019ii a==-∑,5021(1)107i i a =-=∑,则数列{}n a 中有多少项取值为零?(121nin i aa a a n *==+++∈∑N ,)(Ⅱ)若各项非零数列{}n a 和新数列{}n b 满足11i i i b b a ---=(23i n =,,,). (ⅰ)若首项10b =,末项1n b n =-,求证数列{}n b 是等差数列;(ⅱ)若首项10b =,末项0n b =,记数列{}n b 的前n 项和为n S ,求n S 的最大值和最小值.石景山区2013—2014学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.(两空的题目第一空2分,第二空3分)三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)()f x 2cos 2+1x x =+ …………2分 2sin 2+16x π=+(), ……………4分222262k x k πππππ-≤+≤+,k ∈Z ,36k x k ππππ-≤≤+,k ∈Z ,……………6分所以函数)(x f 的单调递增区间为[]36k k ππππ-+,()k ∈Z . ……………7分(Ⅱ)因为44x ππ-≤≤,22363x πππ-≤+≤, ……………9分 sin(2)16x π≤+≤, 12sin 2+136x π+≤+≤(), ……………11分所以当2=63x ππ+-,即=4x π-时,函数)(x f 取得最小值1+.……………13分 16.(本小题共13分)解:(Ⅰ)根据抽样,估计该校高三学生中体质为优秀的学生人数有10300=10030⨯人.……………3分(Ⅱ)依题意,体质为良好和优秀的学生人数之比为15:103:2=.所以,从体质为良好的学生中抽取的人数为3535⨯=,从体质为优秀的学生中抽取的人数为2525⨯=.……………6分(ⅰ)设“在选出的3名学生中至少有1名体质为优秀”为事件A,则3335C9()1C10P A=-=.故在选出的3名学生中至少有1名体质为优秀的概率为910.…………9分(ⅱ)解:随机变量X的所有取值为123,,.123235C C3(1)C10P X⋅===,213235C C6(2)C10P X⋅===,3335C1(3)C10P X===.……………12分所以,随机变量X的分布列为:36191231010105EX=⨯+⨯+⨯=.……………13分17.(本小题共14分)(Ⅰ)证明:因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA CD⊥. ……………1分取AD的中点G,连结GC,APEBDCG因为底面ABCD 为直角梯形,AD ∥BC ,o 90ABC ∠=,且1AB BC ==, 所以四边形ABCG 为正方形, 所以CG AD ⊥,且1=2CG AD , 所以o =90ACD ∠,即AC CD ⊥. ……………3分 又PAAC A =,所以CD ⊥平面PAC . ……………4分 (Ⅱ)解:如图,以A 为坐标原点,AB AD AP ,,所在直线分别为x y z ,,轴建立空间直角坐标系xyz A -. ……………5分则(000)A ,,,(110)C ,,,(011)E ,,,(002)P ,,, 所以(002)AP =,,,(110)AC =,,,(011)AE =,,. 因为PA ⊥平面ABCD ,所以(002)AP =,,为平面ACD 的一个法向量.设平面EAC 的法向量为1()n x y z =,,,由10n AC ⋅=,10n AE ⋅=得00x y y z +=⎧⎨+=⎩,,令1x =,则1y =-,1z =,所以1(111)n =-,,是平面EAC 的一个法向量. ……………8分 所以1cos n AP <>==, 因为二面角E AC D --为锐角, 所以二面角E AC D -- ……………9分 (Ⅲ)解:假设在线段AB 上存在点F (不与A B ,两点重合),使得AE ∥平面PCF . 设(00)F a ,,,则(110)CF a =--,,,(112)CP =--,,. 设平面PCF 的法向量为2()n x y z =,,,由20n CF ⋅=,20n CP ⋅=得(1)020a x y x y z --=⎧⎨--+=⎩,,令1x =,则1y a =-,2a z =, 所以2(11)2an a =-,,是平面PCF 的一个法向量.……………12分因为AE ∥平面PCF , 所以20AE n ⋅=,即(1)02aa -+=, ……………13分 解得23a =, 所以在线段AB 上存在一点F (不与A B ,两点重合),使得AE ∥平面PCF ,且2=3AF . ……………14分18.(本小题共13分)解:(Ⅰ)当2a =时,()2xf x e x =-,(0)1f =,()2x f x e '=-,得(0)1f '=-, ……………2分所以曲线()f x 在点(0(0))f ,处的切线方程为1y x =-+. ……………3分 (Ⅱ)()xf x e a '=-.当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间为()-∞+∞,,无单调递减区间; ……………5分当0a >时,(ln )x a ∈-∞,时,()0f x '<,(ln )x a ∈+∞,时,()0f x '>, 此时()f x 的单调递增区间为(ln )a +∞,,单调递减区间为(ln )a -∞,.……………7分(Ⅲ)由题意知(0)0f '=得1a =,经检验此时()f x 在0x =处取得极小值.……………8分因为MP ≠∅,所以()f x mx <在1[2]2,上有解,即1[2]2x ∃∈,使()f x mx <成立, ……………9分即1[2]2x ∃∈,使x e x m x ->成立, …………10分所以min ()x e x m x->. 令()1x e g x x =-,2(1)()xx e g x x-'=, 所以()g x 在1[1]2,上单调递减,在[12],上单调递增,则min ()(1)1g x g e ==-, ……………12分 所以(1)m e ∈-∞,+. ……………13分19.(本小题共14分)解:(Ⅰ)因为点(20),在椭圆C 上, 所以22401a b+=, 所以24a =, ……………1分 因为椭圆C 的离心率为12, 所以12c a =,即22214a b a -= , ……………2分 解得23b =, ……………4分所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)设0(1)P y -,,033()22y ∈-,, ①当直线MN 的斜率存在时,设直线MN 的方程为0(1)y y k x -=+,11()M x y ,,22()N x y ,,由2203412(1)x y y y k x ⎧+=⎨-=+⎩,,得22222000(34)(88)(48412)0k x ky k x y ky k ++++++-=, ……………7分 所以2012288+34ky k x x k +=-+, ……………8分因为MP PN =,即P 为MN 中点, 所以12=12x x +-,即20288=234ky k k +--+. 所以003(0)4MN k y y =≠, ……………9分 因为直线l MN ⊥,所以043l y k =-, 所以直线l 的方程为004(1)3y y y x -=-+, 即041()34y y x =-+ , 显然直线l 恒过定点1(0)4-,. ……………11分 ②当直线MN 的斜率不存在时,直线MN 的方程为1x =-,此时直线l 为x 轴,也过点1(0)4-,. ……………13分 综上所述直线l 恒过定点1(0)4-,. ……………14分 20.(本小题共13分)解:(Ⅰ)设数列{}n a 中项为110-,,分别有x y z ,,项. 由题意知5094107x y z x y z y ++=⎧⎪-=-⎨⎪+=⎩,,,解得11z =.所以数列{}n a 中有11项取值为零. ……………3分 (Ⅱ)(ⅰ){11}i a ∈-,且11i i i b b a ---=,得到121(23)i i b a a a i n -=+++=,,,,若1(121)i a i n ==-,,,,则满足1n b n =-. 此时11i i b b --=,数列{}n b 是等差数列; 若121n a a a -,,,中有*(0)p p p >∈,N 个1-,则121n b n p n =--≠-不满足题意; 所以数列{}n b 是等差数列. ……………7分(ⅱ)因为数列{}n b 满足11i i i b b a ---=, 所以121(23)i i b a a a i n -=+++=,,,,根据题意有末项0n b =,所以1210n a a a -+++=.而{11}i a ∈-,,于是n 为正奇数,且121n a a a -,,,中有12n -个1和12n -个1-. 12112121()()n n n S b b b a a a a a a -=+++=+++++++ 121(1)(2)n n a n a a -=-+-++ 要求n S 的最大值,则只需121n a a a -,,,前12n -项取1,后12n -项取1-, 所以2max (1)()(2)(4)14n n S n n -=-+-++=(n 为正奇数). 要求n S 的最小值,则只需121n a a a -,,,前12n -项取1-,后12n -项取1, 则2min (1)()(2)(4)14n n S n n -=------=-(n 为正奇数). …………13分【注:若有其它解法,请酌情给分.】。
石景山区2012—2013学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( ) A . {}2,1B . {}4,32,C . {}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( ) A . 13i --B .i +2C .13i +D .i +33.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD 则===( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4. 设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ5.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .46.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种7A .38 B .4 C .2 D .348. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k , 即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论: ① []20133∈; ② []22-∈;③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”. 其中,正确结论的个数为( ).A .1B .2C .3D .4第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 . 10.如右图,从圆O 外一点P 引圆O 的割线PAB 和PCD ,PCD 过圆心O ,已知1,2,3PA AB PO ===,则圆O 的半径等于 . 11.在等比数列{}n a 中,141=,=42a a -,则公比=q ;123++++=n a a a a L .12. 在ABC ∆中,若2,60,a B b =∠=︒=,则BC 边上的高等于 .13.已知定点A 的坐标为(1,4),点F 是双曲线221412x y -=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 .14. 给出定义:若11< +22m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题: ①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为1; ④ 函数=()y f x 在13(,]22-上是增函数. 则上述命题中真命题的序号是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.PA BCO•D(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D CD ⊥,如图2.(Ⅰ)求证: BC ⊥平面1A DC ;(Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.17.(本小题共13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1123p 、、,且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;图1 图2A 1BCDE(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望EX .18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)讨论函数=()y f x 零点的个数.19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,,且经过点(4,1)M ,直线:=+l y x m 交椭圆于不同的两点A B 、. (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不过点M ,求证:直线MA MB 、的斜率互为相反数.20.(本小题共13分)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)xf x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)。
石景山区2012—2013学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( )A . {}2,1B . {}4,32,C .{}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( )A . 13i --B .i +2C .13i +D .i +33.A C 为平行四边形A B C D 的一条对角线,(2,4),(1,3),A B A C A D 则===( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4. 设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ 5.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .46.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 7.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .38B .4C .2D .348. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论: ① []20133∈; ② []22-∈;③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”. 其中,正确结论的个数为( ).A .1B .2C .3D .4第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 . 10.如右图,从圆O 外一点P 引圆O 的割线P A B 和P C D ,P C D 过圆心O ,已知1,2,3PA AB PO ===,则圆O 的半径等于 . 11.在等比数列{}n a 中,141=,=42a a -,则公比=q ;123++++=n a a a a L .12. 在ABC ∆中,若2,60,7a B b =∠=︒=,则B C 边上的高等于 .13.已知定点A 的坐标为(1,4),点F 是双曲线221412xy-=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 .14. 给出定义:若11< +22m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题:①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为1; ④ 函数=()y f x 在13(,]22-上是增函数.则上述命题中真命题的序号是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt A B C ∆中,90C ∠=︒,36B C A C ==,.D 、E 分别是A C AB 、上的点,且//D E BC ,将ADE ∆沿D E 折起到1A D E ∆的位置,使1A D C D ⊥,如图2.(Ⅰ)求证: B C ⊥平面1A D C ; (Ⅱ)若2C D =,求B E 与平面1A BC 所成角的正弦值;(Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.17.(本小题共13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1123p 、、,且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望E X .PA BC O•DA BCD E图1图2A 1BCDE18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数. (Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程;(Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)讨论函数=()y f x 零点的个数.19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点(4,1)M ,直线:=+l y x m 交椭圆于不同的两点A B 、. (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不过点M ,求证:直线M A M B 、的斜率互为相反数.20.(本小题共13分)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈. (Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)xf x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg 20.301,lg30.477,lg2013 3.304≈≈≈)石景山区2012—2013学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BADCCABC二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分)三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2s i n s i n +c o s=2s i n+s i n 2x x x x x =2 2s i n (2-)14x π=+ ……………5分π=T ……………7分(Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分当2--42x ππ=时,即8x π=-时,)(x f 的最小值为-2+1. ………13分16.(本小题共14分)(Ⅰ)证明: 在△A B C 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D D E ∴⊥.又11,,A D CD CD D E D A D BCD E ⊥⋂=∴⊥面.由1,.BC BCD E A D BC ⊂∴⊥面1,,BC CD CD BC C BC A D C ⊥⋂=∴⊥面. …………………………4分(Ⅱ)如图,以C 为原点,建立空间直角坐标系. ……………………5分1(2,0,0),(2,2,0),(0,3,0),(2,0,4)D E B A .设(,,)x y z =n 为平面1A BC 的一个法向量,因为(0,3,0),C B =1(2,0,4)CA =所以30240y x z =⎧⎨+=⎩,令2x =,得=0,=1y z -.所以(2,0,1)=-n 为平面1A BC 的一个法向量. ……………………7分 设BE 与平面1A BC 所成角为θ. 则44sin =cos 555BE θ<⋅>==⋅n .所以BE 与平面1A BC 所成角的正弦值为45. …………………9分(Ⅲ)设(,0,0)D x ,则1(,0,6)A x x -,2221(-0)(0-3)(6--0)A B x x =++22-1245x x =+ …………………12分当=3x 时,1A B 的最小值是33.即D 为A C 中点时,1A B 的长度最小,最小值为33. …………………14分17.(本小题共13分)记“甲、乙、丙三人各自破译出密码”分别为事件321,,A A A ,依题意有12311(),(),(),23P A P A P A p ===且321,,A A A 相互独立.题号 9 10111213 14 答案 2;6611222n ;---3329①③A 1BCD Exzy(Ⅰ)甲、乙二人中至少有一人破译出密码的概率为121()P A A -⋅1221233=-⨯=. …………………3分(Ⅱ)设“三人中只有甲破译出密码”为事件B ,则有()P B =123()P A A A ⋅⋅=121(1)233p p -⨯⨯-=, …………………5分所以1134p -=,14p =. ……………………7分(Ⅲ)X 的所有可能取值为3,2,1,0. ……………………8分所以1(0)4P X ==,(1)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅111312111423423424=+⨯⨯+⨯⨯=,(2)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅11312111112342342344=⨯⨯+⨯⨯+⨯⨯=,(3)P X ==P 123()A A A ⋅⋅=111123424⨯⨯= . ……………………11分X 分布列为:X 0 12 3 P14112414 124……………………12分所以,1111113()012342442412E X =⨯+⨯+⨯+⨯=. ………………13分2.(本小题共13分) (Ⅰ)1()=f x a x'- …………………1分(1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………3分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x xx''--, 解得x)1 , 0(1) , 1(∞+()F x ' +0 -)(x F↗最大值↘…………………6分(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………8分 (Ⅲ)令()=ln +1=0f x x ax -,ln +1=x a x .令 ln +1()=x g x x,22ln +11(ln +1)ln ()=()==x x x g x xxx-''-,则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减,当=1x 时,()g x 的最大值为(1)=1g .所以若>1a ,则()f x 无零点;若()f x 有零点,则1a ≤.………………10分若=1a ,()=ln +1=0f x x ax -,由(Ⅰ)知()f x 有且仅有一个零点=1x .若0a ≤,()=ln +1f x x ax -单调递增,由幂函数与对数函数单调性比较,知()f x 有且仅有一个零点(或:直线=1y ax -与曲线=ln y x 有一个交点).若0<<1a ,解1()==0f x a x'-得1=x a,由函数的单调性得知()f x 在1=x a处取最大值,11()=ln>0f a a ,由幂函数与对数函数单调性比较知,当x 充分大时()<0f x ,即()f x 在单调递减区间1(,+)a∞有且仅有一个零点;又因为1()=<0a f e e-,所以()f x 在单调递增区间1(0)a,有且仅有一个零点.综上所述,当>1a 时,()f x 无零点;当=1a 或0a ≤时,()f x 有且仅有一个零点;当0<<1a 时,()f x 有两个零点. …………………13分19.(本小题共14分)(Ⅰ)设椭圆的方程为22221x y ab+=,因为32e =,所以224a b =,又因为(4,1)M ,所以221611ab+=,解得225,20b a ==,故椭圆方程为221205xy+=. …………………4分(Ⅱ)将y x m =+代入221205xy+=并整理得22584200x mx m ++-=,22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分 (Ⅲ)设直线,M A M B 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y ,则212128420,55m m x x x x -+=-=. …………………9分12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线M A M B 、的斜率互为相反数. …………………14分 20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列。