D
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表