(整理)范德蒙行列式及其应用
- 格式:doc
- 大小:504.50 KB
- 文档页数:16
范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。
它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质 1.范德蒙行列式的定义 定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---= (1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在级行列式中,第行(或第列)的元素除外都是零,那么这个行列式等于与它的代数余子式的乘积 ,在=中,从最后一行开始,每一行减去它相邻前一行的倍得=根据上述定理=提出每一列的公因子后得=最后一个因子是阶范德蒙行列式,用表示,则有=同样可得=()()()此处是一个n-2阶范德蒙行列式,如此继续下去,最后得=()()()由以上的计算可以得出,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1nn n n n nx x x x x x x x x ---=∏(i j x x -).有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.二. 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.1. 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助. 例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0,如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有 ()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c ac a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c xc x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.2. 范德蒙行列式在矩阵的特征值与特征向量中的应用例 4 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 5 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11jr r Ax x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.3. 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例。
范德蒙行列式的相关应用(一)范德蒙行列式在行列式计算中的应用 范德蒙行列式的标准规范形式是:1222212111112111()n n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏根据范德蒙行列式的特点,将所给行列式包括一些非范德蒙行列式利用各种方法将其化为范德蒙行列式,然后利用范德蒙行列式的结果,把它计算出来。
常见的化法有以下几种:1.所给行列式各列(或各行)都是某元素的不同次幂,但其幂次数排列与范德蒙行列式不完全相同,需利用行列式的性质(如提取公因式,调换各行(或各列)的次序,拆项等)将行列式化为范德蒙行列式。
例1 计算222111222333nn n nD n n n =解 n D 中各行元素都分别是一个数自左至右按递升顺序排列,但不是从0变到n r -。
而是由1递升至n 。
如提取各行的公因数,则方幂次数便从0变到1n -.[]21212111111222!!(21)(31)(1)(32)(2)(1)13331n n n n D n n n n n n nn n ---==-------!(1)!(2)!2!1!n nn =--例2 计算1111(1)()(1)()1111n n n n n n a a a n a a a n D a a a n ---+----=--解 本项中行列式的排列规律与范德蒙行列式的排列规律正好相反,为使1n D +中各列元素的方幂次数自上而下递升排列,将第1n +列依次与上行交换直至第1行,第n 行依次与上行交换直至第2行第2行依次与上行交换直至第n 行,于是共经过(1)(1)(2)212n n n n n ++-+-+++=次行的交换得到1n +阶范德蒙行列式:[][](1)21111(1)211111(1)(1)()(1)()(1)(1)(2)()2(1)((1))!n n n n n n n nn n nk aa a n D a a a n a a a n a a a a a n a a a a n a n k ++---+=--=-----=--------------=∏ 若n D 的第i 行(列)由两个分行(列)所组成,其中任意相邻两行(列)均含相同分行(列);且n D 中含有由n 个分行(列)组成的范德蒙行列式,那么将n D 的第i 行(列)乘以-1加到第1i +行(列),消除一些分行(列)即可化成范德蒙行列式: 例3 计算1234222211223344232323231122334411111sin 1sin 1sin 1sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin D +Φ+Φ+Φ+Φ=Φ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ解 将D 的第一行乘以-1加到第二行得:123422221122334423232323112233441111sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin ΦΦΦΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ再将上述行列式的第2行乘以-1加到第3行,再在新行列式中的第3行乘以-1加到第4行得:12342222141234333412341111sin sin sin sin (sin sin )sin sin sin sin sin sin sin sin i j j i D ≤<≤ΦΦΦΦ==Φ-ΦΦΦΦΦΦΦΦΦ∏例4 计算211122222111111111nnnn nnx x x x x x D x x x ++++++=+++ (1)解 先加边,那么22111111222222222210001111111111111111111n n nn n n n nnnnnx x x x x x D x x x x x x x x x x x x ---+++=+++=+++ 再把第1行拆成两项之和,2211111122111120001111nnn n nnnnnnx x x x x x D x x x x x x =-11111112()(1)()()[2(1)]nnk j i k j j k ni j k nnnk j i i j k ni i x xx x x x x x x x x ≤<≤=≤<≤≤<≤===----=---∏∏∏∏∏∏2.加行加列法各行(或列)元素均为某一元素的不同方幂,但都缺少同一方幂的行列式,可用此方法: 例5 计算2221233312121113n n nnn nx x x D x x x x x x =解 作1n +阶行列式:122222121333312121111n nn nnnn n nz x x x z x x x D z x x x z x x x +==1()()ni j k i l k j nx z x x =≤<≤--∏∏由所作行列式可知z 的系数为D -,而由上式可知z 的系数为:211211(1)()()nn n j k i n j k li x x x x x x -=≥>≥--∑∏通过比较系数得:1211()()nn j k i n j k li D x x x x x x =≥>≥=-∑∏ 3.拉普拉斯展开法运用公式D =1122n n M A M A M A ++来计算行列式的值:例6 计算111111122122111000010010000100100001n n n n n n n n nnx x y y x x D y y x x y y ------=解 取第1,3,21n -行,第1,3,21n -列展开得: 11111111222211111111n n n n n n nn nnx x y y x x y y D x x y y ------==()()j i j i n j i lx x y y ≥>≥--∏4.乘积变换法 例7 设121(0,1,22)nk k k k k ni i s x xx x k n ==+++==-∑,计算行列式1112122n n n nn s s s s s s D s s s ---=解11121111222111nnn iii i nnn n iiii i i nnnn n n ii i i i nxxxxxD xxx -=====--====∑∑∑∑∑∑∑∑211111221222222122111122111111()n n n nn n n n nnnnj i l i j nx x x x x x x x x x x x x xxx x x x x -----≤<≤==-∏例8 计算行列式000101011101()()()()()()()()()n n n n n n n n nnnn n n n a b a b a b a b a b a b D a b a b a b ++++++=+++解 在此行列式中,每一个元素都可以利用二项式定理展开,从而变成乘积的和。
范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。
范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。
范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。
范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。
范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。
首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。
通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。
其次,在微积分中,范德蒙行列式也有着重要的应用。
在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。
通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。
另外,在数论中,范德蒙行列式也有着重要的应用。
由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。
通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。
除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。
它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。
范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。
2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。
3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。
1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。
具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。
第2讲 范德蒙德行列式的几点应用我们知道,n 阶范德蒙德行列式()2111121222121111n n n ijj i nn nnnx x x x x x V x x x x x --<-==-∏≤≤,当这些i x 两两互异时,0n V ≠.这个事实有助于我们理解不少结果.例1 证明一个n 次多项式之多有n 个互异根. 证 设()2012n n f x a a x a x a x =++++有1n +个互异的零点121,,,n x x x +,则有()20120n i i i n i f x a a x a x a x =++++=,1 1i n +≤≤.即这个关于01,,,n a a a 的齐次线性方程组的系数行列式()211122221121111101nn ijj i n n n n n x x x x x x x x x x x <++++=-≠∏≤≤,因此0120n a a a a =====.这个矛盾表明()f x 至多有n 个互异根. 例2 设12,,,n a a a 是n 个两两互异的数.证明对任意n 个数12,,,n b b b ,存在惟一的次数小于n 的多项式()L x :()1nj i i j ii jx a L x b a a =≠-=-∑∏,使得()i i L a b =,1 i n ≤≤.证 从定义容易看出()L x 的次数小于n ,且()i i L a b =,故只需证明唯一性即可. 设()210121n n f x c c x c x c x --=++++满足()i i f a b =,1 i n ≤≤,即这个关于0121,,,,n c c c c -的线性方程组的系数行列式()21111212221211101n n ijj i nn nnna a a a a a a a a a a --<-=-≠∏≤≤,故0121,,,,n c c c c -是唯一的,必须()()f x L x =.这个例子就是有名的拉格朗日插值公式.例3 设()()()121,,,n f x f x f x -是1n -个复系数多项式,满足 ()()()121211|n n n n n n x x f x xf x x f x ---++++++,证明()()()1211110n f f f -====.证 设()()()()()211211n n n n n n f x xf x x f x p x x x ---+++=+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得这个关于()()()1211,1,,1n f f f -的齐次线性方程组的系数行列式()()()22221211101n n n n n ωωωωωω-----≠,因此()()()1211110n f f f -====.例4 设n 是奇数,()()()121,,,n f x f x f x -是1n -个复系数多项式,满足()()()123221211|n n n n n n n n x x x f x xf x x f x -------+-++++,证明()()()1211110n f f f --=-==-=.证 注意到当n 是奇数时,()()123111n n n n x x x x x ---+=+-+-+,可按照例3的思路完成证明.例5 设A 是个n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关.证 设12,,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,,r ααα适合i i i A αλα=,1 i r ≤≤,假设11220r r x x x ααα+++=,那么有()11220j r r A x x x ααα+++=,1 1j r -≤≤.即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫==⋅= ⎪⎝⎭∑∑∑,注意到()0j ir rλ⨯≠,必须11220r r x x x ααα====,于是120r x x x ====,这证明了12,,,r ααα线性无关.例6 计算行列式()()()()()()()()()111212122211121111n n n n n n n x x x x x x D x x x ϕϕϕϕϕϕϕϕϕ---=,其中()11kk k k nk x x a xa ϕ-=+++.解 注意到下面的等式: 即得()1n ijj i nD x x <=-∏≤≤.例7 计算行列式1212111111111n n n x x x D x x x n n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,其中()()11!x x x x k k k --+⎛⎫= ⎪⎝⎭.解 直接利用例6可得()()111!2!1!n ijj i nD x x n <=--∏≤≤. 例8 设12,,,n a a a 是正整数,证明n 阶行列式。
范德蒙行列式及其应用1 预备知识定义1.1)133(]1[p121211112111,n n n n n nx x x D x x x n x x x ---⋯⋯=,⋯⋯⋯⋯⋯⋯叫做 的阶范德蒙行列式.12111121111212111n i i i n i i i n n n n nx x x D n x x x x x x x x x ---+++⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯叫做阶准范德蒙行列式.定理1.2)133(]1[p ∏≤≤≤-=ni j jin x x D 1)(.证明 方法一)133(]1[p由n D 的最后一行开始,每一行减去它的相邻的前一行乘以1x ,并由行列式的展开定理可得递推公式111312)())((----=n n n D x x x x x x D Λ,其中1-n D 是n x x x Λ32的n-1阶范德蒙行列式,由以上递推公式可求得∏≤≤≤-=ni j jin x x D 1)(.证明 方法二将n D 看作系数与121,,-n x x x Λ有关,未知量是n x 的一元多项式.则当)1,,2,1(-==n i x x i n Λ时,0=n D .所以121,,-n x x x Λ是n D 的根,所以,)1,2,1()(-=-n i D x x n i n Λ.又因为当j i ≠时,1),(=--j n i n x x x x ,所以*---=-)())()((12121n n n n n n x x x x x x x x x g D ΛΛ另一方面,如果将n D 按最后一列展开,可知道, n D 是n x 的n-1次多项式,且1-n n x 项的系数是n-1阶范德蒙行列式12122212111nn n n n nx x x D x x x ----⋯⋯=⋯⋯⋯⋯⋯与*可比较得 )(211n n x x x g D Λ=-.因此1121)())((-----=n n n n n n D x x x x x x D Λ;同理22122111)())((---------=n n n n n n D x x x x x x D Λ;依似类推,最后有)(1212x x D D -=.又因为11=D ,所以∏≤≤≤-=ni j jin x x D 1)(.另外利用行列式的性质可推得n 阶范德蒙行列式的性质)1(]2[p 性质1 若将n D 逆时针旋转ο90,可得值为 n n n D 2)1()1(--.性质2 若将n D 顺时针旋转ο90,可得值为n n n D 2)1()1(--.性质3 若将n D 旋转ο180,可得值为n D .2 范德蒙行列式在行列式计算中的应用2.1 简单变形 例1 计算()()()()11111nnn a a a n D a a a n -⋯-⋯⋯⋯⋯=-⋯-⋯解 由范德蒙行列式性质3得!)())()((111∏∏∏=≤≤≤≤≤≤=-=---=nk ni j ni j k j i i a j a D例2 计算n+1阶行列式211111111112122222222221111111111nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a b a b a b a b a a b a b a b a b D a a b a b a b a b ---+++++++++⋯⋯=⋯⋯⋯⋯⋯⋯⋯解 从第i 行提取公因子)1,,2,1(+=n i a ni Λ,就可以得到转置的n+1阶范德蒙行列式,于是()111b nnn i iji j i n D a b =≤<≤+=-∏∏例3 计算行列式2111111212222221111n n n n n nn n x x x x x x x x x x D x x x x x ---⋯-⋯-=⋯⋯⋯⋯⋯⋯-解 从第i 行提取公因子)1,,2,1(1+=-n i x x i iΛ,然后再把第1列加到第2列,之后再把第2列加到第3列,⋯,再把第n-1列加到第n 列,就得到n 阶范德蒙行列式,于是()111nii j i j i ni x D x x x =≤<≤=--∏∏.例4 计算行列式()()()()()()11112122221222212221111n nnnn n n n n n n n n n n n D n n n n ----⋯--⋯--=⋯⋯⋯⋯⋯--⋯⋯解 由范德蒙行列式性质得()()()()()()()()12111111112122212122221222n n n n n n nnnn n n n n D n n n n n n n n +----⋯--⋯⋯⋯⋯⋯⋯=-⋯--⋯--()1!nn =-1!2!⋯2.2 升阶法求解 例1 计算n 阶行列式221111222222221*********n n n n n n n n n n n n nnnnx x x x x x x x D x x x x x x x x --------⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯解 将D 升阶为下面的n+1阶行列式221111112212222212211111122122111111n n n n n n n n n n n n n n n n n n n n n n n n n nx x x x x x x x x x x x x x x x x x x x xx x x x ----+-----------⋯⋯⋯⋯⋯⋯⋯⋯⋯∆=⋯⋯⋯既插入一行与一列,使1+∆n 是关于x x x x n ,,,21Λ的n+1阶范德蒙行列式,此处x 是变数.于是∏≤≤≤+----=∆ni j j in n x xx x x x x x 1211)()())((Λ,故1+∆n 是一个关于x 的n 次多项式,它可以写成{}ΛΛ++++-+-=∆-≤≤≤+∏12111))(1()(n n n ni j j in x x x x x x x.另一方面,将1+∆n 按其第n+1行展开,既得Λ+-+-=∆-+≤≤≤+∏11211)1()(n n n ni j j in Dx x x x,比较1+∆n 中关于1-n x的系数,既得∏≤≤≤-+++=ni j j in x xx x x D 121)()(Λ.例2 计算211122222111111111nnnnnnx x x x x x D x x x ++++++=+++L L L LL LL解 将行列式增加第一行第一列并保持行列式值不变21112100011111111nnnn nx x x D x x x +++=+++L L L L LL LL把第一列乘以-1分别加到其它的列得21112111111n n n n n x x x D x x x ---=L L L L L L L L 把第一行拆分得2211111122200011111111nn n n nn nnn nx x x x x x D x x x x x x =-L L L L LL L L L L L L L L LL第一个行列式按第一行展开提取i x 后为n 阶范德蒙行列式,第二个行列式为1n +阶范德蒙行列式()()()111121nniijijii j i nj i ni D x x x x x x =≤≤≤≤==----∏∏∏∏p p()()11121n ni i i j i i j i nx x x x ==≤≤⎡⎤=---⎢⎥⎣⎦∏∏∏p2.3 套用定理法求解 定理 2.3.1()12121211111211112121111,2,3,1n i n in i i i i p p p n n p p p i i i n n n n nx x x D x x x D i n x x x x x x x x x -----+⋯+++⋯⋯⋯⋯⋯⋯⋯==⋯=⋯-⋯⋯⋯⋯⋯⋯∑其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,∑-in p p p x x x Λ21表示()n i -阶排列和,nD 为n 阶范德蒙行列式. W证明过程大部分是用数学归纳法给出其计算结果的,本文用代数教程中广泛使用的升阶法证明 证明 ()i 在行列式1+i D 中第1i +行和()1n +列相应的元素.考虑()1n +阶范德蒙行列式()122222121111121211111111121111n n i i i i ni i i i n i i i i n n n nnx x x x x x x x f x D x x x x x x x x x x x x x x x x ----++++⋯⋯⋯⋯⋯⋯⋯⋯==⋯=⋯⋯⋯⋯⋯⋯⋯⋯()()()()213111n x x x x x x xx --⋯--()()()3222n x x x x xx -⋯--⋯ ⋯ ⋯ ⋯ ()n x x -=()()()()121n ijj i nxx x x x x x x ≤<≤--⋯--∏ )(*()ii 由()*式的两端,分别计算多项式()f x 中i x 项的系数.在()*式的左端,由行列式计算得,ix 项的系数为行列式中该元素对应的代数余子式()()()()()111,11111i n i n i n i i A D D ++++++++=-=-在()*式的右端,由多项式计算得,由12,,n x x x ⋯为()0f x =的n 个不同根,根据根与系数的关系,ix 项的系数为()()()1212110,1,2,1nnn in i p p p ij p p p j i na x x x xx i n --⋯≤<≤=-⋯-=⋯-∑∏其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,i p p p x x x -Λ21表示()n i -阶排列和.()iii 比较()f x 中i x 项的系数计算行列式1i D +,因为()*式的左右端i x 项的系数应相等,所以 ()()()12121111n in ii nn ii p p p ij p p p j i nD x x x xx --+-+⋯≤<≤-=-⋯-∑∏ ()()121211n in ii p p p ij p p p j i nD x x x xx --+⋯≤<≤=⋯-**∑∏()()1212110,1,2,1n nn ii p p p n p p p D x x x D i n -+⋯=-⋯=⋯-∑定理得证.利用定理可以计算各阶准范德蒙行列式,简便易行. 例1计算准范德蒙行列式1234562222221234564444444123456555555123456666666123456111111a a a a a a a a a a a a D a a a a a a a a a a a a aaaaaa=解 由定理,因为6,3,n i ==所以()123123416p p p ij p p p j i D a a a aa ≤<≤=-=∑∏()()12312445616ijj i a a a a a a a a a a a ≤<≤++⋯+-∏.可以看出升阶法求解中的例1套用定理求解更简单.3 范德蒙行列式在其它方面的应用例1设()21211112111111,1n n n n n n x x x a a a p x a a a ------⋯⋯=⋯⋯⋯⋯⋯⋯其中121,n a a a -,⋯是互不相同的数.(1)由行列式定义,说明()p x 是一个1n -次多项式; (2)由行列式的性质求()p x 的根.证明(1)将()p x 按第一行展开知它是x 的多项式,又1n x-的系数为()11n +-乘以一个范德蒙行列式,其值不为零(因为i a 互异),故()p x 为关于x 的1n -次多项式. (2)取()1,2,i x a i n ==⋯,则行列式两行相同其值为零,即有()0i p a =,故121,n a a a -,⋯是()p x 的全部根.例2 设()112n n f x a a x a x-=+++L 011,,,n εεε-L 为全部的n 次单位根,证明:()()()123112211132011345122341n n nn n n n n n n na a a a a a a a a a a a a a a D f f f a a a a a a a a a a εεε-------==L L L L L L LL L L L L证明 令ε为n 次原根,且假定()0,1,1iji n εε==-L 用范德蒙行列式()()()()212124211111111111n n n n n n εεεεεεεεε------∆=L L L L LLL LL左乘D ,再从每列分别提出()()()111,,n f ff εε-L 即得()()()()()()()()()()()()()()()()()()()111212121111111111n n n n n n n n n n f f f f f f D f f f f f f f f f f εεεεεεεεεεεεεεεεε----------∆==∆L L L L L LLL因为0∆≠,所以()()()()()()1101n n D f ff f f f εεεεε--==LL .只要熟悉了范德蒙行列式使用的形式和使用技巧,便可以很好地应用范德蒙行列式了.例3 如果n 次多项式()21121n n n n n o f x a a x a x a x a x ---=+++++L 有1n +个不同的根,那么()0f x ≡.证明 设121,,n x x x +L 是()f x 的1n +个不同的根,则有2111211112112222221112111100n n n n n o n nn n n o n n n n n n n n o n a a x a x a x a x a a x a x ax a x a a x a x a x a x --------+-+++⎧+++++=⎪+++++=⎪⎨⎪⎪+++++=⎩L L L L L L L L L L L L L L L L L L 上式可看作1n +个未知量10,,,n n a a a -L 1n +个方程的齐次线性方程组.其系数行列式为()2111222211121111101n n n ijj i n n n n n x x x x x x D x x x x x +≤≤++++==-≠∏p L L L L LLLL所以上式只有零解.即1100,n n a a a a -=====L 也就是说()0f x ≡.。
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
德蒙行列式是一种正交化处理方法,它也称作正交行列式。
它主要用于调整数据,使相应的变量之间形成一种平行关系。
在统计学中,德蒙行列式也称作正交因子分析的主成分分析。
范德蒙行列式是德蒙行式的一种推广,它将行列式的变量和系数扩展到多个变量之间形成多列。
范德蒙行列式对调整数据更有效,因为它考虑了多个变量之间的相互关系。
范德蒙行列式可以更好地探索数据集中的不同变量的关系。
此外,它还能估计出一个变量的综合指标,以衡量该变量出现的频率。
教学中,范德蒙行列式可以用于解释数据库中的复杂关系,帮助学生了解两个或多个变量之间的精确关系。
此外,该方法还可以建立一个可以衡量多个变量相互影响程度的联合指标,帮助学生更有效地理解多变量数据集和使用数据来测量其他变量时出现的潜在因素。
总体而言,范德蒙行列式可以提供有效的处理数据的方法,能够帮助学生学习多变量数据分析,解决复杂的理论问题。
它也可以用于教学过程中,帮助学生了解各种变量之间的关系,用数据形象化进行深入分析。
第2讲 范德蒙德行列式的几点应用我们知道,n 阶范德蒙德行列式()2111121222121111n n n ijj i nn nnnx x x x x x V x x x x x --<-==-∏≤≤,当这些i x 两两互异时,0n V ≠.这个事实有助于我们理解不少结果.例1 证明一个n 次多项式之多有n 个互异根. 证 设()2012n n f x a a x a x a x =++++有1n +个互异的零点121,,,n x x x +,则有()20120n i i i n i f x a a x a x a x =++++=,1 1i n +≤≤.即这个关于01,,,n a a a 的齐次线性方程组的系数行列式()211122221121111101nn ijj i n n n n n x x x x x x x x x x x <++++=-≠∏≤≤,因此0120n a a a a =====.这个矛盾表明()f x 至多有n 个互异根. 例2 设12,,,n a a a 是n 个两两互异的数.证明对任意n 个数12,,,n b b b ,存在惟一的次数小于n 的多项式()L x :()1nj i i j ii jx a L x b a a =≠-=-∑∏,使得()i i L a b =,1 i n ≤≤.证 从定义容易看出()L x 的次数小于n ,且()i i L a b =,故只需证明唯一性即可. 设()210121n n f x c c x c x c x --=++++满足()i i f a b =,1 i n ≤≤,即这个关于0121,,,,n c c c c -的线性方程组的系数行列式()21111212221211101n n ijj i nn nnna a a a a a a a a a a --<-=-≠∏≤≤,故0121,,,,n c c c c -是唯一的,必须()()f x L x =.这个例子就是有名的拉格朗日插值公式.例3 设()()()121,,,n f x f x f x -是1n -个复系数多项式,满足 ()()()121211|n n n n n n x x f x xf x x f x ---++++++,证明()()()1211110n f f f -====.证 设()()()()()211211n n n n n n f x xf x x f x p x x x ---+++=+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得这个关于()()()1211,1,,1n f f f -的齐次线性方程组的系数行列式()()()22221211101n n n n n ωωωωωω-----≠,因此()()()1211110n f f f -====.例4 设n 是奇数,()()()121,,,n f x f x f x -是1n -个复系数多项式,满足()()()123221211|n n n n n n n n x x x f x xf x x f x -------+-++++,证明()()()1211110n f f f --=-==-=.证 注意到当n 是奇数时,()()123111n n n n x x x x x ---+=+-+-+,可按照例3的思路完成证明.例5 设A 是个n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关.证 设12,,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,,r ααα适合i i i A αλα=,1 i r ≤≤,假设11220r r x x x ααα+++=,那么有()11220j r r A x x x ααα+++=,1 1j r -≤≤.即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫==⋅= ⎪⎝⎭∑∑∑,注意到()0j ir rλ⨯≠,必须11220r r x x x ααα====,于是120r x x x ====,这证明了12,,,r ααα线性无关.例6 计算行列式()()()()()()()()()111212122211121111n n n n n n n x x x x x x D x x x ϕϕϕϕϕϕϕϕϕ---=,其中()11kk k k nk x x a xa ϕ-=+++.解 注意到下面的等式: 即得()1n ijj i nD x x <=-∏≤≤.例7 计算行列式1212111111111n n n x x x D x x x n n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,其中()()11!x x x x k k k --+⎛⎫= ⎪⎝⎭.解 直接利用例6可得()()111!2!1!n ijj i nD x x n <=--∏≤≤. 例8 设12,,,n a a a 是正整数,证明n 阶行列式能被()()2121221n n n n ----整除.证 直接运用例6、例7可得 能被()()()2121!2!1!1221n n n n n ---=--整除.例9 计算n 阶范德蒙德行列式()()()221212421111111111n n n n n n V εεεεεεεεε-----=, 其中22cossini n nππε=+⋅. 解 注意到1kε=当且仅当|n k ,可得()()()1222000000100000n n n n n nV n n n--==-, 由此()()1222n n n n V i n --=±,n V 的模2n n V n =.现在来确定n V 的幅角:令cossini nnππα=+,2εα=,故对于上面考虑的j 和k ,总有0k j n <-<,这意味着()sin0k j nπ->,因此()2012sinn n j k n k j V n nπ<--==∏≤≤,由此可设n n V V β=⋅,其中这样就求得了()()13222n n n n V in --=.例10 证明缺项的n 阶范德蒙德行列式 证 按n V 的第一行展开行列式,可得 例11 设有n 个常数12,,,n b b b ,n 个两两不同的常数12,,,n a a a 以及由x 的恒等式定义的一个多项式()p x .对于一个已知多项式()t φ,定义另一个多项式()Q x ,它为上面的恒等式中将()12,,,,n p x b b b 分别代之以()()()()12,,,,n Q x b b b φφφ所得的x 的恒等式所确定.证明用多项式()()()12n x a x a x a ---除以()()p x φ所得的余式为()Q x .证 由于n 阶范德蒙德行列式()21111212221211101n n kj j k nn nnna a a a a a aa a a a --<-=-≠∏≤≤,按题设这里的行列式的最后一列展开,可知()p x 是个次数小于n 的多项式.从条件知对每个i a ,()()212121111111112121222222222121000011101111n i ii i i i n n n n n n nnnnnnnnp a b a a a p a a a a b a a a b a a a b a a a b a a a b a a a b --------==, 必须()i i p a b =,1 i n ≤≤.由拉格朗日插值公式知()1nj i i j ii jx a p x b a a =≠-=-∑∏.同理可求出由恒等式所定义的多项式()()1nj i i j ii jx a Q x b a a φ=≠-=-∑∏.设()()()()()()()12n p x q x x a x a x a r x φ=⋅---+,其中()r x 的次数小于n .为证()()r x Q x =,只需证明1 i n ≤≤时,()()i i r a Q a =即可.事实上,对每个i a ,()()()()()i i i i r a p a b Q a φφ===是易见的,因此结论成立.例12 设()f y 在[],a b 上连续,在(),a b 内存在2阶导数,证明在a x b <<上有()()()()()12f x f a f b f a x a b a f c x b -----''=-,这里(),c a b ∈.特别地,存在(),c a b '∈,使()()()()2224b a a b f b f f a f c -+⎛⎫'''-+=⎪⎝⎭. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F y x x f x b b f b =, 则()F y 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,由中值定理存在12a x x x b <<<<,使()()120F x F x ''==,故再运用一次中值定理,存在()12,c x x ∈,使()0F c ''=,即()()()()()2220021011f c a a f a F c x x f x b b f b ''''==, 展开行列式即得()()()()()12f x f a f b f a x a b a f c x b -----''=-.特别地,取2a bx +=,则有相应的(),c a b '∈,使上式成立,即 ()()()()21222a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--'''=+-,化简即得()()()()2224b a a b f b f f a f c -+⎛⎫'''-+= ⎪⎝⎭. 例13 设()f x 在[],a b 内存在1n -阶导数,12n a x x x b =<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏.证 在[],a b 上构造函数()()()()()21211111212222211111n n n n nn nn x x x f x x x x f x F x x x x f x x x x f x ----=, ()F x 在[],a b 内存在1n -阶导数.因()()()120n f x f x f x ====,反复利用微分中值定理,存在(),c a b ∈,使()()10n Fc -=,即()()()()()()()()12211111112212222222100001!1011n n n n n n n n nn n nn n f c x x x x f x F c x x x x f x x x x x f x ---------==.按第一行展开行列式得()()()()()()221111*********222222111111!11n n n n n n n nnn nnnx x f x x x x x x f x x x x n f c x x f x x x x --------=,左边按最后一列展开行列式,化简可得()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例14 设()f x 在[],a a nh +内存在n 阶导数,这里0h >.证明存在a c a nh <<+,使()()()()()()()()()12112nn n n n f a nh f a n h f a n h f a h f c ⎛⎫⎛⎫+-+-++--+-= ⎪ ⎪⎝⎭⎝⎭.证 置i x a ih =+,0 i n ≤≤,则012n a x x x x a nh =<<<<=+.于是例14在本质上是例13的特殊情形.。
范德蒙的行列式摘要:一、范德蒙行列式的定义二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系2.行列式的可逆性3.行列式的乘积性质三、范德蒙行列式的计算方法1.递推法2.矩阵的行列式公式3.扩展行列式公式四、范德蒙行列式在数学中的应用1.线性方程组的求解2.矩阵的逆矩阵求解3.矩阵的LU 分解五、范德蒙行列式的推广1.范德蒙行列式的更高阶数2.带标号的范德蒙行列式正文:范德蒙行列式是一种特殊的行列式,它是以法国数学家范德蒙命名的。
范德蒙行列式具有很多重要的性质和应用,下面我们来详细了解一下。
一、范德蒙行列式的定义范德蒙行列式是一个n 阶行列式,它的定义如下:|A| = a11 * a22 * ...* ann- a12 * a21 * ...* an1+ a13 * a22 * ...* an2- a14 * a23 * ...* an3+ ...+ (-1)^(n-1) * a1n * a2n-1 * ...* ann其中,a11, a12, ..., ann 是矩阵A 的主对角线元素,a12, a21, ..., an1 是矩阵A 的次对角线元素,以此类推。
二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系范德蒙行列式的转置行列式等于其本身,即|A| = |A^T|。
2.行列式的可逆性当且仅当矩阵A 可逆时,范德蒙行列式不为零。
3.行列式的乘积性质设矩阵A 和矩阵B 都是n 阶矩阵,则有|AB| = |A| * |B|。
三、范德蒙行列式的计算方法1.递推法对于n 阶矩阵A,我们可以通过递推的方式计算范德蒙行列式。
具体来说,我们可以先计算出n-1 阶矩阵A"的范德蒙行列式,然后用主对角线元素和次对角线元素的关系来计算n 阶矩阵A 的范德蒙行列式。
2.矩阵的行列式公式根据矩阵的行列式公式,我们可以直接计算出范德蒙行列式。
3.扩展行列式公式通过扩展行列式公式,我们也可以计算范德蒙行列式。
范德蒙行列式的证明及其应用在高等代数中,范德蒙行列式是一个具有特殊形式和重要性质的行列式。
它不仅在理论上有着深刻的意义,而且在实际的数学问题求解中也有着广泛的应用。
范德蒙行列式的形式如下:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix}\接下来,我们先来证明范德蒙行列式。
证明范德蒙行列式通常使用数学归纳法。
当\(n = 2\)时,范德蒙行列式为:\begin{vmatrix}1 & 1 \\x_1 & x_2\end{vmatrix} = x_2 x_1\假设\(n 1\)阶范德蒙行列式成立,即:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_{n 1} \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_{n 1}^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 2} & x_2^{n 2} & x_3^{n 2} &\cdots & x_{n 1}^{n 2}\end{vmatrix} =\prod_{1\leq i < j\leq n 1} (x_j x_i)\对于\(n\)阶范德蒙行列式,将其按第一列展开:\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix} =\sum_{k = 1}^n (-1)^{1 + k} 1 \timesM_{1k}\其中\(M_{1k}\)是原行列式中第一行第\(k\)列元素的余子式。
范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。
它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质 1.范德蒙行列式的定义 定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---= (1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在级行列式中,第行(或第列)的元素除外都是零,那么这个行列式等于与它的代数余子式的乘积 ,在=中,从最后一行开始,每一行减去它相邻前一行的倍得=根据上述定理=提出每一列的公因子后得=最后一个因子是阶范德蒙行列式,用表示,则有=同样可得=()()()此处是一个n-2阶范德蒙行列式,如此继续下去,最后得=()()()由以上的计算可以得出,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1nn n n n nx x x x x x x x x ---=∏(i j x x -).有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.二. 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.1. 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助. 例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0,如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有 ()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c ac a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c xc x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.2. 范德蒙行列式在矩阵的特征值与特征向量中的应用例 4 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 5 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11jr r Ax x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.3. 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例。
6 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 7 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在nF 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmmn m α-=,令()()()()()()111222212121122212221222nnn k k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 8 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V. 证明:当n=1时,显然成立.设n>1时,令12,,,nααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,nn n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1tii V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.4. 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域. 例 9 确定常数使得当x 0时为最高阶的无穷小,并给出其等价表达式.解:对的各项利用泰勒公式,有当时,若最高阶无穷小在6阶以上,则有方程组其系数行列式为范德蒙行列式,由于,故以为未知数的方程组只有零解:从而,这显然不合题意,故以下考虑当时最高阶无穷小为6阶的情形.令等价于此时为未知数的线性方程组,其系数行列式为范德蒙行列式方程组有唯一一组依赖于的解:从而在的领域内的最高阶无穷小有下述形式的表达式.5.范德蒙行列式在行列式计算中的应用 范德蒙行列式的标准规范形式是:1222212111112111()n n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏根据范德蒙行列式的特点,我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算。