最新版山东省济宁市中考数学试卷
- 格式:docx
- 大小:289.27 KB
- 文档页数:4
2020年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1. −72的相反数是()A.−72B.−27C.27D.722. 用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.1413. 下列各式是最简二次根式的是()A.√13B.√12C.3D.√534. 若一个多边形的内角和等于1080∘,则这个多边形的边数是( )A.9B.8C.7D.65. 一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A的北偏西42∘方向上,在海岛B的北偏西84∘方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里6. 下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()C.丙D.丁7. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=158. 如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm29. 如图,在△ABC中,点D为△ABC的内心,∠A=60∘,CD=2,BD=4.则△DBC的面积是()A.4√3B.2√3C.2D.410. 小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101二、填空题:本大题共5小题,每小题3分,共15分.11. 分解因式a3−4a的结果是________.12. 已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是________.13. 已如m+n=−3,则分式m+nm ÷(−m2−n2m−2n)的值是________.14. 如图,小明在距离地面30米的P处测得A处的俯角为15∘,B处的俯角为60∘.若斜面坡度为1:√3,则斜坡AB的长是________米.15. 如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE⋅CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是________.三、解答题:本大题共7小题,共55分.16. 先化简,再求值:(x+1)(x−1)+x(2−x),其中x=12.17. 某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).。
山东济宁中考数学试题及答案解析一、选择题1. 下列哪个数不是32的约数?A) 2 B) 4 C) 5 D) 8【答案解析】C) 5解析:32除以5等于6余2,因此5不是32的约数。
2. 若一椭圆的长轴长为10,短轴长为6,则其离心率为()。
A) 1 B) 2 C) 3 D) 4【答案解析】B) 2解析:根据离心率的定义,离心率等于长轴与短轴的比值(e=a/b),所以离心率为10/6=2。
3. 已知函数f(x) = 3x^2 - 5x + 2,则f(-1)的值等于()。
A) -6 B) -4 C) -2 D) 0【答案解析】A) -6解析:将x替换为-1,代入函数f(x)中计算,f(-1) = 3*(-1)^2 - 5*(-1) + 2 = 3 + 5 + 2 = 10,所以f(-1)的值为-6。
4. 若A∪B={1, 2, 3, 4, 5},A∩B={2, 3, 4},则A的补集为()。
A) {1, 2, 3, 4, 5} B) {2, 3, 4, 5} C) {1, 5} D) {1}【答案解析】C) {1, 5}解析:A的补集即A中没有而A∪B中有的元素,即{1, 5}。
5. 已知a:b=3:5,b:x=4:7,则a:x=()。
A) 6:7 B) 9:20 C) 12:14 D) 15:20【答案解析】B) 9:20解析:根据比例的性质,a:x=(a:b)(b:x)=(3:5)(4:7)=(3*4:5*7)=12:35,则化简得到9:20。
二、填空题1. 化简:(3x^2y^3)(5x^4y^5)(-2xy)^3。
【答案解析】-120x^11y^14解析:将指数相乘,系数相乘,得到-120x^11y^14。
2. 三角形ABC,∠B = 90°,AC = 10,BC = 24,若CD ⊥ AB于D,求CD的长度。
【答案解析】CD = 8解析:根据勾股定理,AC^2 = AD^2 + CD^2,代入已知条件可得10^2 = AD^2 + CD^2,化简得100 = AD^2 + CD^2。
初中毕业升学考试(山东济宁卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【答案】B.【解析】试题分析:根据正数都大于0,负数都小于0,正数大于一切负数即可判定在0,﹣2,1,这四个数中,最小的数是-2,故答案选B.考点:有理数的大小比较.【题文】下列计算正确的是()A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x 【答案】A.【解析】试题分析:选项A,根据同底数幂的乘法可得原式=x5,正确;选项B,根据合并同类项法则可得原式=2x6,错误;选项C,根据幂的乘方可得原式=x6,错误;选项D,根据负整数指数幂法则原式=,错误,故答案选A.考点:负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方.【题文】如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A. 20°B. 30°C. 35°D. 50°【答案】C【解析】试题分析:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又因∵a∥b,再由平行线的性质可得∠2=∠3=35°.故答案选C.评卷人得分考点:平行线的性质.【题文】如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.【答案】D.【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.【题文】如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【答案】C.【解析】试题分析:已知,在⊙O中,=,∠AOB=40°,根据同圆或等圆中,同弧或等弧所对的圆周角相等,并且都等于所对圆周角的一半可得∠ADC=∠AOB=20°,故答案选C.考点:圆周角定理.【题文】已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【答案】A.【解析】试题分析:已知x﹣2y=3,所以3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故答案选A.考点:求代数式的值.【题文】如图将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A. 16cmB. 18cmC. 20cmD. 21cm【答案】C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C.考点:平移的性质.【题文】在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者编号12345成绩/分9688869386那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【答案】D.【解析】试题分析:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,86出现两次,次数最多,是众数,中位数是中间的数为88,故答案选D.考点:中位数;众数.【题文】如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.【答案】B.【解析】试题分析:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况(如下图所示),所以使图中黑色部分的图形仍然构成一个轴对称图形的概率是.故答案选B.考点:轴对称图形的概念;概率.【题文】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【答案】D.【解析】试题分析:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,可求得AM=OA•sin∠AOB=a,OM=a,所以点A的坐标为(a,a).因点A 在反比例函数y=的图象上,所以a×a=48,解得:a=10,或a=﹣10(舍去).即AM=8,OM=6.再由四边形OACB是菱形,OA=OB=10.所以S△AOF=S菱形AOBC=×OB×AM=×10×8=40.故答案选D.考点:反比例函数的综合题.【题文】若式子有意义,则实数x的取值范围是.【答案】x≥1.【解析】试题分析:根据二次根式的性质可得x﹣1≥0,即x≥1.考点:二次根式有意义的条件.【题文】如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.【答案】AH=CB或EH=EB或AE=CE.(添加其中任意一个即可)【解析】试题分析:根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.考点:全等三角形的判定.【题文】如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【答案】.【解析】试题分析:已知AG=2,GD=1,可得AD=3,再由AB∥CD∥EF,根据平行线分线段成比例定理可得. 考点:平行线分线段成比例定理.【题文】已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km/h.【答案】80.【解析】试题分析:设这辆汽车原来的速度是xkm/h,由题意得方程,解得x=80,经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.考点:分式方程的应用.【题文】按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【答案】.【解析】试题分析:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是9,所以此规律方框内的l【题文】2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【答案】(1)图见解析;(2)0.221万元.【解析】试题分析:(1)将销售总额减去2012、2014、2015年的销售总额,即可求得2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.试题解析:解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.考点:条形统计图;折线统计图.【题文】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【答案】(1)30°;(2)文化墙PM不需要拆除,理由详见解析.【解析】试题分析:(1)由新坡面的坡度为1:,由特殊角的三角函数值,即可求得新坡面的坡角;(2)过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB 的长,则可求得答案.试题解析:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.考点:解直角三角形的应用.【题文】某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】试题分析:(1)设年平均增长率为x,根据“2014年投入资金给×(1+增长率)2=2016年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.试题解析:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.【题文】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【答案】(1)1;(2)CN=CM,理由详见解析.【解析】试题分析:(1)根据正方形的性质可得△ABD是等腰直角三角形,再由勾股定理可得2AB2=BD2,即可求得AB=1;(2)根据等腰三角形的性质可得CE⊥AF,再证得∠BAF=∠BCN,利用AAS证得△ABF≌△CBN,根据全等三角形的性质可得AF=CN,再证△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.试题解析:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.考点:四边形综合题.【题文】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【答案】(1);(2)相切,理由见解析;(3).【解析】试题分析:(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9的距离,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.试题解析:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.考点:一次函数综合题;阅读理解题.【题文】如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣x+1;(2)点P坐标为(3,);(3)点Q坐标为(9,4)或(15,16).【解析】试题分析:(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)作出B点关于l的对称点B′,连接EB′交l于点P,如图所示,,三角形BEP为顶点的三角形的周长最小,再求出直线B′E的解析式,进而得出P点坐标;(3)先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG 直线解析式可求出点Q坐标.试题解析:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k 值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).考点:二次函数综合题.。
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−3的绝对值是( )A. 3B. −13C. −3 D. 132.如图是一个正方体的展开图,把展开图折叠成正方体后,有“建”字一面的相对面上的字是( )A. 人B. 才C. 强D. 国3.下列运算正确的是( )A. √ 2+√ 3=√ 5B. √ 2×√ 5=√ 10C. 2÷√ 2=1D. √ (−5)2=−54.如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE=3,则菱形的边长为( )A. 6B. 8C. 10D. 125.为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是( )A. 班主任采用的是抽样调查B. 喜爱动画节目的同学最多C. 喜爱戏曲节目的同学有6名D. “体育”对应扇形的圆心角为72°6.如图,边长为2的正六边形ABCDEF内接于⊙O,则它的内切圆半径为( )A. 1B. 2C. √ 2D. √ 37.已知点A(−2,y1),B(−1,y2),C(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是( ) A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y3<y2<y18.解分式方程1−13x−1=−52−6x时,去分母变形正确的是( )A. 2−6x+2=−5B. 6x−2−2=−5C. 2−6x−1=5D. 6x−2+1=59.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41′,∠F=43°19′,则∠A的度数为( )A. 42°B. 41°20′C. 41°D. 40°20′10.如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )A. 90B. 91C. 92D. 93二、填空题:本题共5小题,每小题3分,共15分。
济宁中考数学试卷2023
济宁中考数学试卷2023指的是在2023年济宁市中考中,针对数学学科所进行的测试试卷。
该试卷由济宁市教育局或相关机构组织命题,用于评估初中毕业生的数学知识和应用能力。
以下是济宁中考数学试卷2023示例:
选择题:
1.下列运算正确的是()
A. 3a + 2b = 5ab
B. 5a^2 - 2b^2 = 3
C. 6a + a = 6a^2
D. (x - 1)^2 = x^2 + 1 - 2x
2.某校九年级共有学生1000名,为了了解这些学生的身体健康状况,现抽取
部分学生进行体检。
若采用系统抽样的方法,则抽样的间隔为()
A. 10
B. 20
C. 30
D. 40
判断题:
1.两条直线被第三条直线所截,则同旁内角的和为180°。
()
2.若多边形的内角和等于它的外角和,则这个多边形的边数为4。
()
计算题:
1.计算:(√3 + √2) - (√3 - √2) = ___.。
21 C B A DE第6题E DC AB第9题济宁市2022年高中阶段学校招生考试数学试题第一卷 〔选择题 30分〕一、选择题〔以下各题的四个选项中,只有一项符合题意,每题3分,共30分〕。
1、〔2022·济宁〕计算-1-2的结果是 A.-1 B.1 C.-3 D. 3 2、〔2022·济宁〕以下等式成立的是A.a 2+a 3=a 5B.a 3-a 2=aC.a 2.a 3=a 6D.(a 2)3=a 63、〔2022·济宁〕如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A.15cmB.16cmC.17cmD. 16cm 或17cm 4、〔2022·济宁〕以下各式计算正确的选项是 A.532=+ B. 2222=+C.22223=-D.5621012-=-5、〔2022·济宁〕关于x 的方程x 2+bx+a=0的一个根是-a 〔a ≠0〕,那么a-b 值为 A.-1 B.0 C.1 D.26、〔2022·济宁〕如图,AE ∥BD ,∠1=120°,∠2=40°,那么∠C的度数是A.10°B. 20°C.30°D. 40° 7、〔2022·济宁〕在x 2□2xy □y 2的空格□中,分别填上“+〞或“-〞,在所得的代数式中,能构成完全平方式的概率是 A. 1B.43 C.21 D.418、〔2022·济宁〕二次函数y=ax 2+bx+c 中,其函数y 与自变量x 之间的局部对应值如下表所示:x … 0 1 2 3 4 … y…4114…点1122121 与y 2的 大小关系正确的选项是A. y 1> y 2B. y 1< y 2C. y 1≥ y 2D.y 1≤ y 2 9、〔2022·济宁〕如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,假设AE=4cm ,那么△ABD 的周长是A. 22cmB.20cmC. 18cmD.15cm 10、〔2022·济宁〕如图,是某几何体的三视图及相关数据,那么下面判断正确的选项是A. a>cB. b>cC. a 2+4b 2=c 2D. a 2+b 2=c 2第二卷 〔非选择题 70分〕B A O 第17题 ED CF 67.5°36.9° A P B第18题 第15题G DBE C AF 二、 填空题〔每题3分,共15分;只要求填写最后结果〕 11、〔2022·济宁〕反比例函数 xm y 1-=的图象在第一、三象限,那么m 的取值范围是。
2022年山东省济宁市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.用四舍五入法取近似值,将数0.0158精确到0.001的结果是( )A. 0.015B. 0.016C. 0.01D. 0.022.如图是由6个完全相同的小正方体搭建而成的几何体,则这个几何体的主视图是( )A.B.C.D.3.下列各式运算正确的是( )A. −3(x−y)=−3x+yB. x3⋅x2=x6C. (π−3.14)0=1D. (x3)2=x54.下面各式从左到右的变形,属于因式分解的是( )A. x2−x−1=x(x−1)−1B. x2−1=(x−1)2C. x2−x−6=(x−3)(x+2)D. x(x−1)=x2−x5.某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是( )A. 从2月到6月,阅读课外书的本数逐月下降B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45C. 每月阅读课外书本数的众数是45D. 每月阅读课外书本数的中位数是586.一辆汽车开往距出发地420km的目的地,若这辆汽车比原计划每小时多行10km,则提前1小时到达目的地.设这辆汽车原计划的速度是x km/ℎ,根据题意所列方程是( )A. 420x =420x−10+1 B. 420x+1=420x+10C. 420x =420x+10+1 D. 420x+1=420x−107.已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )A. 96πcm2B. 48πcm2C. 33πcm2D. 24πcm28.若关于x的不等式组{x−a>0,7−2x>5仅有3个整数解,则a的取值范围是( )A. −4≤a<−2B. −3<a≤−2C. −3≤a≤−2D. −3≤a<−29.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )A. 136B. 56C. 76D. 6510.如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A. 297B. 301C. 303D. 400二、填空题(本大题共5小题,共15.0分)11.二次根式√x−3有意义,则x的取值范围是______.12.如图,直线l1,l2,l3被直线l4所截,若l1//l2,l2//l3,∠1=126°32′,则∠2的度数是______.13.已知直线y1=x−1与y2=kx+b相交于点(2,1).请写出一个b值______(写出一个即可),使x>2时,y1>y2.(x>0)上的一点,点C是OA的中点,过点C作y轴的垂线,14.如图,A是双曲线y=8x垂足为D,交双曲线于点B,则△ABD的面积是______.15.如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=1,则AD的长是______.3三、解答题(本大题共7小题,共55.0分。
济宁市2023年初中学业水平考试一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1. 实数10 1.53π-,,,中无理数是( )A. π B. 0 C. 13- D. 1.5【答案】A【解析】【分析】根据无理数的概念求解.【详解】解:实数1,0,,1.53π-中,π是无理数,而10,,1.53-是有理数;故选A .【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.2. 下列图形中,是中心对称图形的是( )A. B. C.D.【答案】B【解析】【分析】在一个平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;由此判断即可得出答案.【详解】选项A 、C 、D 中的图形不是中心对称图形,故选项A 、C 、D 不符合题意;选项B 中的图形是中心对称图形,故B 符合题意.故选:B .【点睛】本题考查了中心对称图形的定义,在一个平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3. 下列各式运算正确的是( )A. 236x x x⋅= B. 1226x x x ÷= C. 222()x y x y +=+ D. ()3263x y x y =【答案】D【解析】【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键.4. 有意义,则实数x 的取值范围是( )A. 2x ≠ B. 0x ≥ C. 2x ≥ D. 0x ≥且2x ≠【答案】D【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到不等式组,解不等式组即可得到答案.∴020x x ≥⎧⎨-≠⎩,解得0x ≥且2x ≠,故选:D【点睛】此题考查了二次根式有意义的条件和分式有意义的条件,熟练掌握相关知识是解题的关键.5. 如图,,a b 是直尺的两边,a b P ,把三角板的直角顶点放在直尺的b 边上,若135∠=︒,则2∠的度数是( )A. 65︒B. 55︒C. 45︒D. 35︒【答案】B【解析】【分析】根据平行线的性质及平角可进行求解.【详解】解:如图:∵a b P ,135∠=︒,∴135,2ACD BCE ∠=∠=︒∠=∠,∵180BCE ACB ACD ∠+∠+∠=︒,90ACB ∠=︒,∴1809035552BCE ∠=︒-︒-︒=︒=∠;故选B .【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.6. 为检测学生体育锻炼效果,从某班随机抽取10名学生进行篮球定时定点投篮检测,投篮进球数统计如图所示.对于这10名学生的定时定点投篮进球数,下列说法中错误的是( )A. 中位数是5B. 众数是5C. 平均数是5.2D. 方差是2【答案】D【解析】【分析】根据中位数、众数、平均数、方差定义逐个计算即可.【详解】根据条形统计图可得,从小到大排列第5和第6人投篮进球数都是5,故中位数是5,选项A 不符合题意;投篮进球数是5的人数最多,故众数是5,选项B 不符合题意;平均数342536272 5.210+⨯+⨯+⨯+⨯==,故选项C 不符合题意;方差()()()()()222223 5.24 5.225 5.236 5.227 5.22 1.5610-+-⨯+-⨯+-⨯+-⨯==,故选项D 符合题意;故选:D .【点睛】本题考查了中位数、众数、平均数、方差和条形统计图的知识,解答本题的关键在于读懂题意,从图表中筛选出可用的数据,然后整合数据进行求解即可.7. 下列各式从左到右的变形,因式分解正确的是( )A. 22(3)69+=++a a a B. ()24444a a a a -+=-+C ()()22555ax ay a x y x y -=+- D. ()()22824a a a a --=-+【答案】C【解析】【分析】根据因式分解的概念可进行排除选项.【详解】解:A 、22(3)69+=++a a a ,属于整式的乘法,故不符合题意;B 、()24444a a a a -+=-+,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C 、()()22555ax ay a x y x y -=+-,属于因式分解,故符合题意;D 、因为()()22242828a a a a a a -+=+-≠--,所以因式分解错误,故不符合题意;故选C .【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.8. 一个几何体的三视图如下,则这个几何体的表面积是( ).A. 39πB. 45πC. 48πD. 54π【答案】B【解析】【分析】先根据三视图还原出几何体,再利用圆锥的侧面积公式和圆柱的侧面积公式计算即可.【详解】根据三视图可知,该几何体上面是底面直径为6,母线为4的圆锥,下面是底面直径为6,高为4的圆柱,该几何体的表面积为:211π646π4π612π24π9π45π22S ⎛⎫=⨯⨯⨯+⨯+⨯⨯=++= ⎪⎝⎭.故选B .【点睛】本题主要考查了简单几何体的三视图以及圆锥的侧面积公式和圆柱的侧面积公式,根据三视图还原出几何体是解决问题的关键.9. 如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于( )A. 180α︒- B. 1802α︒- C. 90α︒+ D. 902α︒+【答案】C【解析】【分析】根据三角形外角的性质及平行线的性质可进行求解.【详解】解:如图,由图可知:1,4GD EH CG BH ====,90CGD BHE ∠=∠=︒,∴()SAS CGD BHE V V ≌,∴GCD HBE ∠=∠,∵CG BD ∥,∴CAB ABD ∠=∠,∵CFB CAB GCD α∠=∠+∠=,∴ABD HBE α=∠+∠,∴90ABE ABD DBH HBE α∠=∠+∠+∠=︒+;故选C .【点睛】本题主要考查全等三角形性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.10. 已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,,34131111n n n a a a a a a +++==-- ,,,若12a =,则2023a 的值是( )A. 12- B. 13 C. 3- D. 2【答案】A【解析】【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;的由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.二、填空题:本大题共5小题,每小题3分,共15分.11. 一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】3y x =(答案不唯一)【解析】【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点()1,3,且y 随x 增大而增大,可知该函数可以为3y x =(答案不唯一);故答案为3y x =(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12. 已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【解析】【详解】设这个多边形是n 边形,由题意得,(n -2) ×180°=540°,解之得,n =5.13. 某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A ,在点A 和建筑物之间选择一点B ,测得30m AB =.用高()1m 1m AC =的测角仪在A 处测得建筑物顶部E 的仰角为30︒,在B 处测得仰角为60︒,则该建筑物的高是_________m .【答案】()1【解析】【分析】结合三角形外角和等腰三角形的判定求得ED CD =,然后根据特殊角的三角函数值解直角三角形.【详解】解:由题意可得:四边形MNBD ,四边形DBAC ,四边形MNAC 均为矩形,∴30AB CD ==,1MN AC ==,在Rt EMC V 中,30ECD ∠=︒,在Rt EDM △中,60EDM ∠=︒,∴30DEC EDM ECD ∠=∠-∠=︒,∴DEC ECD ∠=∠,∴30ED CD ==,在Rt EDM △中,sin 60EM ED =︒,即30EM =解得EM =∴()1mEN EM MN =+=故答案为:()1+.【点睛】本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.14. 已知实数m 满足210m m --=,则32239m m m --+=_________.【答案】8【解析】【分析】由题意易得21m m -=,然后整体代入求值即可.【详解】解:∵210m m --=,∴21m m -=,∴32239m m m --+()2229m m m m m --=-+229m m m -=-+29m m =-+()29m m =--+19=-+8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.15. 如图,ABC V 是边长为6的等边三角形,点D E ,在边BC 上,若30DAE ∠=︒,1tan 3EAC ∠=,则BD =_________.【答案】3【解析】【分析】过点A 作AH BC ⊥于H ,根据等边三角形的性质可得60BAC ∠=︒,再由AH BC ⊥,可得=30BAD DAH ∠+∠︒,再根据=30BAD EAC ∠+∠︒,可得DAH EAC ∠=∠,从而可得1tan =tan =3DAH EAC ∠∠,利用锐角三角函数求得sin 60AH AB =⋅︒=1==3DH AH ,求得DH =【详解】解:过点A 作AH BC ⊥于H ,∵ABC V 是等边三角形,∴6AB AC BC ===,60BAC ∠=︒,∵AH BC ⊥,∴1302BAH BAC ∠=∠=︒,∴=30BAD DAH ∠+∠︒,∵30DAE ∠=︒,∴=30BAD EAC ∠+∠︒,∴DAH EAC ∠=∠,∴1tan =tan =3DAH EAC ∠∠,∵132BH AB ==,∵ =sin 60=6=AH AB ⋅︒,∴1==3DH AH ,∴DH =∴==3BD BH DH --,故答案为:3.【点睛】本题考查等边三角形的性质、锐角三角函数,熟练掌握等边三角形的性质证明DAH EAC ∠=∠三、解答题:本大题共7小题,共55分.16. 12cos3022--︒-+.【答案】52【解析】【分析】根据二次根式的运算、特殊三角函数值及负指数幂可进行求解.【详解】解:原式1222=-+25=52=.【点睛】本题主要考查二次根式的运算、特殊三角函数值及负指数幂,熟练掌握各个运算是解题的关键.17. 某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x 表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A 90x ≥4B 8090x ≤<m C 7080x ≤<20D 6070x ≤<8E60x <3请根据以上图表信息,解答下列问题:(1)统计表中m =_________,C 等级对应扇形的圆心角的度数为_________;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A 等级中有两名男同学和两名女同学,学校从A 等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.【答案】(1)15,144︒(2)该学校“劳动之星”大约有760人 (3)23【解析】【分析】(1)根据统计图可得抽取学生的总人数为50人,然后可得m 的值,进而问题可求解;(2)根据题意易知大于等于80的学生所占比,然后问题可求解;(3)根据列表法可进行求解概率.【小问1详解】解:由统计图可知:D 等级的人数有8人,所占比为16%,∴抽取学生的总人数为81650÷=%(人),∴504208315m =----=,C 等级对应扇形的圆心角的度数为2036014450⨯=︒︒;故答案为15,144︒;【小问2详解】解:由题意得:415200076050+⨯=(人),答:该学校“劳动之星”大约有760人【小问3详解】解:由题意可列表如下:从A 等级两名男同学和两名女同学中随机选取2人进行经验分享,共有12种情况,恰好抽取一名男同学和一名女同学共有8种情况,所以抽取一名男同学和一名女同学的概率为82123P ==.【点睛】本题主要考查扇形统计图与统计表、概率,熟练掌握扇形统计图及利用列表法求解概率是解题的关键.18. 如图,BD 是矩形ABCD 的对角线.(1)作线段BD 的垂直平分线(要求:尺规作图,保留作图㢃迹,不必写作法和证明);(2)设BD 的垂直平分线交AD 于点E ,交BC 于点F ,连接BE DF ,.①判断四边形BEDF 的形状,并说明理由;②若510AB BC ==,,求四边形BEDF 的周长.【答案】(1)图见详解(2)①四边形BEDF 是菱形,理由见详解;②四边形BEDF 的周长为25【解析】【分析】(1)分别以点B 、D 为圆心,大于12B D 为半径画弧,分别交于点M 、N ,连接MN ,则问题可求解;(2)①由题意易得EDO FBO ∠=∠,易得()ASA EOD FOB V V ≌,然后可得四边形BEDF 是平行四边形,进而问题可求证;②设BE ED x ==,则10AE x =-,然后根据勾股定理可建立方程进行求解.【小问1详解】解:所作线段BD 的垂直平分线如图所示:【小问2详解】解:①四边形BEDF 是菱形,理由如下:如图,由作图可知:OB OD =,∵四边形ABCD 是矩形,∴AD BC ∥,∴EDO FBO ∠=∠,∵E O D FO B ∠=∠,∴()ASA EOD FOB V V ≌,∴ED FB =,∴四边形BEDF 是平行四边形,∵EF 是BD 的垂直平分线,∴BE ED =,∴四边形BEDF 是菱形;②∵四边形ABCD 是矩形,10BC =,∴90,10A AD BC ∠=︒==,由①可设BE ED x ==,则10AE x =-,∵5AB =,∴222AB AE BE +=,即()222510x x +-=,解得: 6.25x =,∴四边形BEDF 的周长为6.2525⨯=.【点睛】本题主要考查矩形的性质、菱形的性质与判定、勾股定理及线段垂直平分线的性质,熟练掌握矩形的性质、菱形的性质与判定、勾股定理及线段垂直平分线的性质是解题的关键.19. 如图,正比例函数112y x =和反比例函数2(0)ky x x=>的图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x=>的图像交于点C ,连接AB AC ,,求ABC V 的面积.【答案】(1)28y x= (2)3【解析】【分析】(1)待定系数法求函数解析式;(2)根据平移的性质求得平移后函数解析式,确定B 点坐标,然后待定系数法求直线AB 的解析式,从而利用三角形面积公式分析计算.【小问1详解】解:把(),2A m 代入112y x =中,122m =,解得4m =,∴()4,2A ,把()4,2A代入2(0)k y x x=>中,24k =,解得8k =,∴反比例函数的解析式为28y x=;【小问2详解】解:将直线OA 向上平移3个单位后,其函数解析式为132y x =+,当0x =时,3y =,∴点B 的坐标为()0,3,设直线AB 的函数解析式为BC y mx n =+,将()4,2A ,()0,3B 代入可得423m n n +=⎧⎨=⎩,解得143m n ⎧=-⎪⎨⎪=⎩,∴直线AB 的函数解析式为134BC y x =-+,联立方程组1328y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得1181x y =-⎧⎨=-⎩,2224x y =⎧⎨=⎩∴C 点坐标为()2,4,过点C 作CM x ⊥轴,交AB 于点N ,在134BC y x =-+中,当2x =时,52y =,∴53422CN =-=,∴134322ABC S =⨯⨯=△.【点睛】本题考查一次函数和反比例函数的交点问题,掌握待定系数法求函数解析式,运用数形结合思想解题是关键.20. 为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元,且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个B 型充电桩,购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】(1)A 型充电桩单价为0.9万元,B 型充电桩的单价为1.2万元(2)共有三种方案:方案一:购买A 型充电桩14个,购买B 型充电桩11个;方案二:购买A 型充电桩15个,购买B 型充电桩10个;方案三:购买A 型充电桩16个,购买B 型充电桩9个;方案三总费用最少.【解析】【分析】(1)根据“用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等”列分式方程求解;(2)根据“购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12”列不等式组确定取值范围,从而分析计算求解【小问1详解】解:设B 型充电桩单价为x 万元,则A 型充电桩的单价为()0.3x -万元,由题意可得:15200.3x x=-,解得 1.2x =,的的经检验: 1.2x =是原分式方程的解,0.30.9x -=,答:A 型充电桩单价为0.9万元,B 型充电桩的单价为1.2万元;【小问2详解】解:设购买A 型充电桩a 个,则购买B 型充电桩()25a -个,由题意可得:()0.9 1.225261252a a a a ⎧+-≤⎪⎨-≥⎪⎩,解得405033a ≤≤,∵a 须为非负整数,∴a 可取14,15,16,∴共有三种方案:方案一:购买A 型充电桩14个,购买B 型充电桩11个,购买费用为0.914 1.21125.8⨯+⨯=(万元);方案二:购买A 型充电桩15个,购买B 型充电桩10个,购买费用为0.915 1.21025.5⨯+⨯=(万元);方案三:购买A 型充电桩16个,购买B 型充电桩9个,购买费用为0.916 1.2925.2⨯+⨯=(万元),∵25.225.525.8<<∴方案三总费用最少.【点睛】本题主要考查了分式方程的应用,一元一次不等式组的应用,理解题意,找准等量关系列出分式方程和一元一次不等式组是解决问题的关键.21. 如图,已知AB 是O e 的直径,CD CB =,BE 切O e 于点B ,过点C 作CF OE ⊥交BE 于点F ,若2EFBF =.(1)如图1,连接BD ,求证:ADB OBE △≌△;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使60MCN ∠=︒,连接MN .请问:三条线段MN BM DN ,,有怎样的数量关系?并证明你的结论.的【答案】(1)见解析 (2)MN BM DN =+,证明见解析【解析】【分析】(1)根据CF OE ⊥,OC 是半径,可得CF 是O e 的切线,根据BE 是O e 的切线,由切线长定理可得BF CF =,进而根据1sin 2CF E EF ==,得出30E ∠=︒,60EOB ∠=︒,根据CD CB =得出»»CDCB =,根据垂径定理的推论得出OC BD ⊥,进而得出90ADB EBO ∠=︒=∠,根据含30度角的直角三角形的性质,得出12AD BO AB ==,即可证明()AAS ABD OEB V V ≌;(2)延长ND 至H 使得DH BM =,连接CH ,BD ,根据圆内接四边形对角互补得出HDC MBC ∠=∠,证明HDC MBC V V ≌()SAS ,结合已知条件证明NC NC =,进而证明CNH CNM V V ≌()SAS ,得出NH MN =,即可得出结论.【小问1详解】证明:∵CF OE ⊥,OC 是半径,∴CF 是O e 的切线,∵BE 是O e 的切线,∴BF CF =,∵2EFBF=∴2EF CF =,∴1sin 2CF E EF ==∴30E ∠=︒,60EOB ∠=︒,∵CD CB=∴»»CDCB =,∴OC BD ⊥,∵AB 是直径,∴90ADB EBO ∠=︒=∠,∵90E EBD ∠+∠=︒,90ABD EBD ∠+∠=︒∴30E ABD ∠=∠=︒,∴12AD BO AB ==,∴()AAS ABD OEB V V ≌;【小问2详解】MN BM DN =+,理由如下,延长ND 至H 使得DH BM =,连接CH ,BD ,如图所示∵180,180CBM NDC HDC NDC ∠+∠=︒∠+∠=︒∴HDC MBC ∠=∠,∵CD CB =,DH BM =∴HDC MBCV V ≌()SAS ,∴BCM DCH ∠=∠,CM CH =由(1)可得30ABD ∠=︒,又AB 是直径,则90ADB ∠=︒,∴60A ∠=︒,∴180120DCB A ∠=︒-∠=︒,∵60MCN ∠=︒,∴1201206060BCM NCD NCM ∠+∠=︒-∠=︒-︒=︒,∴60DCH NCD NCH ∠+=∠=︒,∴NCH NCM ∠=∠,∵NC NC =,∴CNH CNMV V ≌()SAS ,∴NH MN =,∴MN DN DH DN BM =+=+.即MN BM DN =+.【点睛】本题考查了切线的判定,切线长定理,垂径定理的推论,全等三角形的性质与判定,根据特殊角的三角函数值求角度,圆周角定理,圆内接四边形对角互补,熟练掌握全等三角形的性质与判定是解题的关键.22. 如图,直线4y x =-+交x 轴于点B ,交y 轴于点C ,对称轴为32x =的抛物线经过B C ,两点,交x 轴负半轴于点A .P 为抛物线上一动点,点P 的横坐标为m ,过点P 作x 轴的平行线交抛物线于另一点M ,作x 轴的垂线PN ,垂足为N ,直线MN 交y 轴于点D .(1)求抛物线的解析式;(2)若302m <<,当m 为何值时,四边形CDNP 是平行四边形?(3)若32m <,设直线MN 交直线BC 于点E ,是否存在这样的m 值,使2MN ME =?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)234y x x =-++(2)m =(3)存在,12m =【解析】【分析】(1)利用待定系数法求函数解析式;(2)结合平行四边形的性质,通过求直线MN 的函数解析式,列方程求解;(3)根据2MN ME =,确定E 点坐标,从而利用一次函数图象上点的特征计算求解.【小问1详解】解:在直线4y x =-+中,当0x =时,4y =,当0y =时,4x =,∴点()4,0B ,点()0,4C ,设抛物线的解析式为232y a x k ⎛⎫=-+ ⎪⎝⎭,把点()4,0B ,点()0,4C 代入可得2234023042a k a k ⎧⎛⎫-+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得1254a k =-⎧⎪⎨=⎪⎩,∴抛物线的解析式为223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭;【小问2详解】解:由题意,()2,34P m m m -++,∴234PN m m =-++,当四边形CDNP 是平行四边形时,CD =,∴223443OD m m m m =-++-=-+,∴()20,3D m m -,(),0N m ,设直线MN 的解析式为213y k x m m =+-,把(),0N m 代入可得2130k m m m +-=,解得13k m =-,∴直线MN 的解析式为()233y m x m m =-+-,又∵过点P 作x 轴的平行线交抛物线于另一点M ,且抛物线对称轴为32x =,∴()23,34M m m m --++∴()2223334m m m m m -+-=-++,解得1m =(不合题意,舍去),2m =【小问3详解】解:存在,理由如下:∵2MN ME =,∴点E 为线段MN 的中点,∴点E 的横坐标为3322m m -+=,∵点E 在直线4y x =-+上,∴35,22E ⎛⎫ ⎪⎝⎭,把35,22E ⎛⎫ ⎪⎝⎭代入()233y m x m m =-+-中,可得()2353322m m m -+-=,解得14m =(不合题意,舍去),212m =.【点睛】本题考查一次函数和二次函数的综合应用,掌握待定系数法求函数解析式,利用数形结合思想和方程思想解题是关键.。
山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2= .12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(•济宁)的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(•济宁)下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(•济宁)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(•济宁)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(•济宁)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(•济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP 的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(•济宁)分解因式:ma2+2mab+mb2= m(a+b)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(•济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(•济宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(•济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(•济宁)解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(•济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(•济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(•济宁)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(•济宁)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。
2023济宁市中考数学试卷选择题:1. 下列哪个数字是素数?A. 15B. 20C. 29D. 352. 若一个长方形的长为5厘米,宽为3厘米,则其面积为:A. 8平方厘米B. 12平方厘米C. 15平方厘米D. 18平方厘米3. 若一个等差数列的公差为3,首项为4,第n项为16,求n的值是多少?A. 4B. 5C. 6D. 74. 若一个圆的半径为6厘米,则其直径为多少厘米?A. 6B. 12C. 18D. 245. 若一个三角形的三边长分别为3厘米、4厘米、5厘米,则该三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 锐角三角形填空题:6. 小明有一段绳子,长15米,他想把绳子剪成2段,一段比另一段长5米,求较短的一段是______米。
7. 小李家的自行车每小时跑15公里,相比于小王家的自行车每小时跑12公里,小李每小时比小王快______公里。
8. 某数的5倍加7等于32,求这个数是______。
9. 一个三角形的三边长分别为6厘米、8厘米、10厘米,这个三角形是______三角形。
10. 如果一个数的平方是16,那么这个数是______。
应用题:11. 小王每天步行上学,每小时走5公里,上学需要40分钟,求小王家到学校的距离是多少公里?12. 一块长方形花坛,长为8米,宽为5米,小明在花坛周围埋一圈宽度为0.5米的地砖,求需要多少块地砖?13. 小张把一家银行存款4000元,银行年利率为4%,一年后取出本息共多少元?14. 甲、乙两个水果摊上午卖出的苹果数量比梨子多30个,下午甲卖出的梨子数量比苹果多20个,已知甲、乙两家总共卖出苹果和梨子的数量相同,求猜中午卖出的苹果和梨子数量分别是多少?15. 一本书原价30元,打八折优惠促销,小明用一张50元的钞票买了这本书,求找零多少元?。
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)
绝密★启用前
山东省济宁市2018年初中学业水平考试
数 学
(本试卷满分100分,考试时间120分钟)
第Ⅰ卷(非选择题 共30分)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
( )
A.1
B.1-
C.3
D.3-
2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部 署,教育部会同有关部门近五年来共新建、改扩建校舍186 000 000平方米,其中数据186 000 000用科学记数法表示是
( )
A.81.8610⨯
B.618610⨯
C.91.8610⨯
D.90.18610⨯ 3.下列运算正确的是
( )
A.842a a a ÷=
B.22
4a a =()
C.236•a a a =
D.2242a a a +=
4.如图,点B ,C ,D 在⊙O 上,若130BCD ∠=︒,则BOD ∠的度数是
( )
A.50°
B.60°
C.80°
D.100° 5.多项式34a a -分解因式的结果是
( )
A.24a a -()
B.(2)(2)a a a -+
C.22a a a -+()()
D.22a a -()
6.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为10(-,),2AC =.将Rt ABC △先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是
( )
A.2,2()
B.1,2()
C.1,2(-)
D.2,1-()
7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是
( )
A.众数是5
B.中位数是5
C.平均数是6
D.方差是3.6
8.如图,在五边形ABCDE 中,300A B E ∠+∠+∠=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数是
( )
A.50°
B.55°
C.60°
D.65° 9.一个几何体的三视图如图所示,则该几何体的表面积是
( )
A.242π+
B.164π+
C.168π+
D.1612π+
10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是
( )
毕业学校_____________ 姓名________________ 考生号________________
________________ _____________
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------无--------------------
效----------------
数学试卷 第3页(共8页)
数学试卷 第4页(共8页)
A B C D
第Ⅱ卷(非选择题 共70分)
二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上) 11.若二次根式1x +在实数范围内有意义,则x 的取值范围是 .
12.在平面直角坐标系中,已知一次函数21y x =-+的图象经过111,P x y ()、222,P x y ()
两点,若12x x <,则1y 2y .(填“>”“<”“=”) 13.在ABC △中,点E ,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接 DE ,DF ,EF ,请你添加一个条件 ,使BED △与FDE △全等.
14.如图,在一笔直的海岸线l 上有相距2km 的A ,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60°的方向上,从B 站测得船C 在北偏东30°的方向上,则船C 到海岸线l 的距离是 km .
15.如图,点A 是反比例函数4
y x
=
(0x >)图象上一点,直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD x ⊥轴,垂足为D ,连接DC ,若BOC
△的面积是4,则DOC △的面积是 .
三、解答题(本大题共7小题,共55分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分6分)
化简:(2)(2)1)(5)y y y y +--+-(
17.(本小题满分7分)
某校开展研学旅行活动,准备去的研学基地有A (曲阜)、B (梁山)、C (汶上),D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示). (1)求该班的总人数,并补全条形统计图. (2)求D (泗水)所在扇形的圆心角度数;
(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.
18.(本小题满分7分)
在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 EF ;③T 型尺(CD 所在的直线垂直平分线段AB ).
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------
无--------------------
效---
-------------
数学试卷 第5页(共8页) 数学试卷 第6页(共8页)
(1)在图1中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法); (2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积, 具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M ,N 之间的距离,就可求出环形花坛的面积,如果测得MN=10 m ,请你求出这个环形花坛的面积.
19.(本小题满分7分)
“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼
村庄 清理养鱼网箱人数/人 清理捕鱼网箱人数/人 总支出/元 A 15 9 57 000 B 10 16 68 000 人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
20.(本小题满分8分)
如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH DF ⊥,垂足为H ,EH 的延长线交DC 于点G . (1)猜想DG 与CF 的数量关系,并证明你的结论;
(2)过点H 作MN CD ∥,分别交AD ,BC 于点M ,N ,若正方形ABCD 的边长为10,点P 是MN 上一点,求PDC △周长的最小值.
21.(本小题满分9分)
知识背景
当0a >且0x >时,因为2
0a x x ⎛⎫- ⎪ ⎪⎭≥,所以20a x a x -+≥,从而2a
x a x +≥(当x a =时取等号).
设函数(0,0)a
y x a x x
=+>>,由上述结论可知:当x a =时,该函数有最小值为2a .
应用举例
已知函数为10=x y x (>)
与函数204x y x =(>),则当42x ==时,124
y y x x
+=+有最小值为24=4. 解决问题
(1)已知函数为133y x x =+(>﹣)与函数22(3)39x x y =++(>﹣),当x 取何值时,2
1
y y 有最小值?最小值是多少? (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
22.(本小题满分11分)
如图,已知抛物线20y ax bx c a =++≠()经过点30A (,),1,0B (-),0,3C (-). (1)求该抛物线的解析式;
(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;
(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.
谢谢观赏
数学试卷第7页(共8页)数学试卷第8页(共8页)。