等可能性事件的概率.
- 格式:ppt
- 大小:611.00 KB
- 文档页数:18
事件A事件I 等可能性事件一.原理1 基本事件:一次试验连同其中可能出现的每一个结果(事件A ) 称为一个基本事件2.等可能性事件:如果一次试验中可能出现的结果有n 个,而且 所有结果出现的可能性都相等,那么每个基本事件 的概率都是1n,这种事件叫等可能性事件 3.等可能性事件的概率:如果一次试验中可能出现的结果有n 个, 而且所有结果都是等可能的,如果事件A 包含m 个结果, 那么事件A 的概率()m P A n =. 从集合的观点来考察事件A 的概率:()()()card A P A card I =二.应用摸球问题1. 一个口袋中装有大小相同的4个白球和5个黑球, 连续从中取出3个球.(1) 若取后不放回,求取出2个黑球1个白球的概率解(1)从袋中摸出3个球,共有8439=C 种等可能的结果;设从中摸出2个黑球1个白球为事件A ,则A 中有1425C C 种结果所以事件A 的概率为2110)(391425==C C C A P .解题步骤1 设事件2 判断是否是等可能事件,(1)结果是否有限(2)出现的可能性是否相等3求基本事件的总数n,事件A 包含的结果m4求概率5回答(2) 若取后不放回,求取出3球都是黑球的概率(3) 若取后不放回,求取出3球恰好颜色相同的概率(4) 若取球记下颜色后再放回,求取球顺序为 黑白黑的概率(5) 若取球记下颜色后再放回,求取出3球 恰好颜色相同的概率2. 4个球投入5个盒子中,求:(1)每个盒子最多1个球的概率;(2)恰有一个盒子放2个球,其余盒子最多放 1个球的概率解:4个球投入5个盒子中,每个球有5个选法, 4个球有45种不同选择结果,(1) 相当于从5个盒子中选4个盒子,每个盒子 放1个球,有45A 种不同选择结果, ∴所求概率为454245125A . (2) 先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩余的4个盒子中的2个中, 有122544C C A ⋅⋅个不同结果, ∴所求概率为1225444725125C C A ⋅⋅=.。
概率统计的解题技巧【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ;③ 依公式()m P A n 求值; ④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B );特例:对立事件的概率:P (A )+P (A )=P (A +A )=1.(3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );(4)解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n kn nmP AnP A B P A P BP A B P A P BP k C p p-⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件:互斥事件:独立事件:n次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).[解答过程]0.3提示:1335C33.54C102P===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.[解答过程]1.20提示:51.10020P==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为__________.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51. 204=例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=故填0.94.+++例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( ) (A )454(B )361 (C )154(D )158[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:A “取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+212012()()(1)C (1)1.P A P A p p p p =+=-+-=-于是20.961p =-. 解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”,则若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==. 00316179()()1()1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n.[标准解答](I )记“取到的4个球全是红球”为事件A .22222245111().61060C C P A C C =⋅=⋅= (II )记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件. 2B 由题意,得31()1.44P B =-=2111122222122224242()n n n n C C C C C C P B C CC C ++⋅⋅=⋅+⋅22;3(2)(1)n n n =++22222242()n n C C P B C C +=⋅(1);6(2)(1)n n n n -=++ 所以,12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=, 化简,得271160,n n --=解得2n =,或37n =-(舍去),故 2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.[解答过程](Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,23()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+ 0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C ,则P (A )=a ,P (B )=b ,P (C )=c.(Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=a ×b ×(1-c)+(1-a)×b ×c+a ×(1-b)×c+a ×b ×c =ab+bc+ca-2abc.应聘者用方案二考试通过的概率p 2=31P (A ·B )+31P (B ·C )+ 31P (A ·C )= 31×(a ×b+b ×c+c ×a)= 31(ab+bc+ca)(Ⅱ) p 1--- p 2= ab+bc+ca-2abc-31 (ab+bc+ca)=23( ab+bc+ca-3abc)≥23]3abc -=0-≥. ∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. [解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =, ∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=.(Ⅱ)该选手至多进入第三轮考核的概率 3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=.考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,ix ,……,ξ取每一个值ix (=i 1,2,……)的概率P (ix =ξ)=iP ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1)0≥iP ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k nkq p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n=- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A 来算,有()()4110.20.9984P A P A =-=-= (Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===,()11317220511190C CP C ξ===,()2322032190C P Cξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795. 例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)iA i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===, 1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=. ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)iA i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+nn p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+. (4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定. 小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元. (200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=. η的分布列为=(元).Eη=⨯+⨯+⨯2402000.42500.43000.2小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解答过程:易得x没有改变,x=70,而s2=1[(x12+x22+…+502+1002+…+x482)-48x2]=75,48s′2=1[(x12+x22+…+802+702+…+x482)-48x2]48=1[(75×48+48x2-12500+11300)-48x2]48=75-1200=75-25=50.48答案:B考点4 抽样方法与总体分布的估计抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .解答过程:A种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 . 解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 ⑴作出频率分布表;⑵画出频率分布直方图. 思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。
等可能性事件的概率等可能性事件的概率:随机事件的概率,一般可以通过大量重复试验求得其近似值。
但对于某些随机事件,也可以不通过大量重复试验,而只通过对一试验中可能出现的结果的分析来计算其概率。
譬如,投掷一枚均匀的硬币,它要么出现正面,要么出现反面,出现这两种结果的可能性是相等的。
因此,可以认为出现正面的概率是1/2,出现反面的概率也是1/2。
这和大量重复试验的结果是一致的。
历史上,有人做过成千上万次投掷一枚均匀硬币的试验,下面是他们的试验记录:实验者投掷次数n 出现正面朝上的次数m 频率m/n 德摩根2048 1061 0.518布丰4040 2048 0.5069K 〃皮尔逊12000 6019 0.5016K 〃皮尔逊2400 12012 0.5005容易看出,投掷次数越多,频率越接近于0.5。
如果投掷两枚均匀的硬币,这两枚硬币落下后,出现四种结果的可能性是相等的,即:正正、反反、正反、反正,在这四种可能性相等的结果中,两枚都出现正面的结果只有一种,所以投掷两枚硬币时出现两个正面的概率是1/4;同样,两枚都出现反面的概率也是1/4。
在这四种可能性相等的结果中,一枚出现正面,一枚出现反面的结果则有两种,所以投掷两枚硬币时出现一枚正面,一枚反面的概率是1/2。
如果我们投掷三枚均匀的硬币,这些硬币落下后,出现以下八种结果的可能性是相等的:正正正、正正反、正反正、反正正、正反反、反正反、反反正、反反反。
这种在一次试验中发生的可能性相等的事件,称为等可能性事件。
一般地,如果一次试验中共有几种等可能出现的结果,其中事件A 包含的结果有M 种,那么事件A 发生的概率P(A)=m/n。
例如:袋中有5 个白球和3 个黑球,从中任意取出两个球,取出两个球都是白球的概率是多少?为了区别相同颜色的球,设白球为A、B、C、D、E,黑球为P、Q、R,那么从这8 个球中任取2 个球的方法有多少种?在这些取法中,如(A、B),(A、C)所含的球,虽然都是(白、白),可是它们在球的组合上是不同的,所以取法不相同。