圆单元练习题带答案
- 格式:doc
- 大小:104.50 KB
- 文档页数:9
(完整版)圆练习题及答案圆练习题及答案⼀、选择题1、下列结论正确的是( )A.弦是直径 B.弧是半圆 C.半圆是弧 D.过圆⼼的线段是直径2、下列说法正确的是( )A.⼀个点可以确定⼀条直线 B.两个点可以确定两条直线C.三个点可以确定⼀个圆 D.不在同⼀直线上的三点确定⼀个圆3、圆是轴对称图形,它的对称轴有( )A.⼀条 B 两条 C.⼀条 D.⽆数条4、若⊙P的半径为13,圆⼼P的坐标为(5, 12 ), 则平⾯直⾓坐标系的原点O与⊙P的位置关系是( ) A.在⊙P内 B.在⊙P内上 C.在⊙P外 D.⽆法确定5、已知⊙O的直径为10,圆⼼O到弦的距离OM的长为3,则弦AB的长是()A、4B、6C、7D、86、直⾓三⾓形两直⾓边长分别为3和l,那么它的外接圆的直径是( )A.1B.2C.3D.47、已知⊙O的半径长6cm,P为线段O A的中点,若点P在⊙O上,则OA的长是( )A.等于6cm B.等于12cm C.⼩于6cm D .⼤于12cm8、正⽅形ABCD的边长是l,对⾓线AC,BD相交于点O,若以O为圆⼼作圆.要使点A在⊙O外,则所选取的半径可能是( )A.12B.2C.3D.2⼆、填空题1、圆上各点到圆⼼的距离都等于 , 到圆⼼距离等于半径的点都在 .2、若圆的⼀条弦长为该圆的半径等于12cm,其弦⼼距等于 cm.3、在Rt△ABC中,∠C=900, CD⊥AB, AC=2, BC=3,若以C为圆⼼,以2为半径作⊙C,则点A在⊙C ,点B 在⊙C ,点D在⊙C .4、三⾓形的外⼼是三⾓形的三条的交点。
5、如图, AB是⊙O的直径,弦CD⊥AB于点M, AM = 2cm,BM = 8cm. 则CD的长为 cm.6、已知⊙O的半径为5cm,过⊙O内⼀点P的最短的弦长为8cm,则OP= .7、⼀个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是。
8、已知:如图,有⼀圆弧形拱桥,拱的跨度AB=16cm,拱⾼CD=4cm,那么拱形的半径是 cm.三、解答题1、已知,如图,OA,OB为⊙0的半径,C,D分别为OA , OB的中点.求证:(l)∠A=∠B; (2) AE=BE.2、如图,在平⾯直⾓坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平⾏四边形.求点C的坐标.3、已知:如图,∠PAC=300,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于 E、F两点,求圆⼼O到AP的距离及EF的长.4、某居民⼩区⼀处圆柱形的输⽔管道破裂,维修⼈员为更换管道,需确定管道圆形截⾯的半径,下图是⽔平放置的破裂管道有⽔部分的截⾯.(1)请你补全这个输⽔管道的圆形截⾯;(2)若这个输⽔管道有⽔部分的⽔⾯宽AB =16cm,⽔⾯最深地⽅的⾼度为4cm,求这个圆形截⾯的半径.B卷⼀、选择题1、AB为⊙0的直径,C为⊙O上⼀点,过C作CD⊥AB于点D,延长CD⾄E,使DE=CD,那么点E的位置( )A.在⊙0 内 B.在⊙0上 C.在⊙0外 D.不能确定2、出下列命题: (l )垂直于弦的直线平分弦; (2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧; (3 )平分弦的直线必过圆⼼; (4 )弦所对的两条弧的中点连线垂直平分弦。
人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。
圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。
《圆》单元培优练习卷一.选择题1.面积为6π,圆心角为60°的扇形的半径为()A.2 B.3 C.6 D.92.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°3.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4πB.2πC.πD.5.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.6.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B.C.D.7.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=16,∠BAC=∠BOD,则⊙O 的半径为()A.4B.8 C.10 D.68.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.59.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°10.如图,在菱形ABCD中,AC与BD交于点O,BD=CD,以点D为圆心,BD长为半径作,若AC=6,则图中阴影部分的面积是()A.2π﹣3B.2π+3C.π﹣D.π+11.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°12.如图,四边形ABCD中,CD∥AB,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D,点B在⊙O上,连接BD,若DE=4,则BD的长为()A.4 B.4C.8 D.813.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.14.Rt△ABC中,∠ACB=90°,CD为AB边上的高,P为AC的中点,连接P D,BC=6,DP =4.O为边BA上一点,以O为圆心,OB为半径作⊙O,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于.15.如图,AB为⊙O的直径,C,D为⊙O上的点,=.若∠CAB=42°,则∠CAD=16.如图,在Rt△ABC中,∠C=90°,∠B=30°,其中AC=2,以AC为直径的⊙O交AB 于点D,则圆周角∠A所对的弧长为(用含π的代数式表示)17.如图,在△ABC中,∠ABC=90°,∠ACB=30°,BC=2,BC是半圆O的直径,则图中阴影部分的面积为.18.如图,在边长为2的菱形ABCD中,∠B=45°,以点A为圆心的扇形FAG与菱形的边BC相切于点E,则图中的弧长是.19.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.22.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.23.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.24.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.参考答案一.选择题1.解:设扇形的半径为r.由题意:=6π,∴r2=36,∵r>0,∴r=6,故选:C.2.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.3.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.4.解:∵四边形ABCD为圆O的内接四边形,∴∠B+∠D=180°,∵∠B=135°,∴∠D=45°,∵∠AOC=2∠D,∴∠AOC=90°,则l==2π,故选:B.5.解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.6.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.7.解:∵∠BAC=∠BOD,∴,∴AB⊥CD,∵AE=CD=16,∴DE=CD=8,设OD=r,则OE=AE﹣r=16﹣r,在Rt△ODE中,OD=r,DE=8,OE=16﹣r,∵OD2=DE2+OE2,即r2=82+(16﹣r)2,解得r=10.故选:C.8.解:∵CD是⊙O的切线,∴∠CDB=∠CAD,又∠C=∠C,∴△CDB∽△CAD,∴==,即=,解得,CD=2,故选:C.9.解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.10.解:∵在菱形ABCD中,AC与BD交于点O,BD=CD,AC=6,∴AC⊥BD,OC=3,BD=CD=BC,BD=2OB,∴△BCD是等边三角形,∴∠BDC=60°,OB=,∴BD=2,∴图中阴影部分的面积是:S阴=S扇形CDB﹣S△CDB=﹣×2×3=2π﹣3,故选:A.11.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.12.解:如图,连接OD,设⊙O的半径为r,∵⊙O与边CD相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠3+∠ODE=90°,∵AE为直径,∴∠ADE=90°,∴∠ODA+∠ODE=90°,∴∠ODA=∠3,而∠ODA=∠1,∴∠1=∠3,∵ED=EC=4,∴∠2=∠3,∴∠1=∠2,∵AB∥CD,∴∠2=∠CAB,∴∠1=∠CAB∴=,∴AE⊥BD,∵∠1=∠2,DF⊥AC,∴AF=CF,∴CF=﹣4=r﹣2,∵∠DEF=∠AED,∠DFE=∠ADE,∴△EDF∽△EAD,∴DE:EA=EF:DE,即4:2r=(r﹣2):4,整理得r2﹣2r﹣8=0,解得r=﹣2(舍去)或r=4,∴EF=r﹣2=2,在Rt△DEF中,DF==2,∴DB=2DF=4.故选:B.二.填空题(共6小题)13.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.14.解:∵∠ADC=90°,P是AC中点,∴AC=2DP=8,又∵BC=6,∴AB=10,则CD===,∴BD==,如图1,若⊙O与CD相切,则⊙O的半径r=BD=;如图2,若⊙O与CP相切,则BO=OE=r,AO=10﹣r,由OE⊥AC知OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=;如图3,若⊙O与DP所在直线相切,切点F,则OF⊥DP,即∠OFD=∠ACB=90°,OB=OF=r,∴OD=BD﹣BO=﹣r,∵∠ODF=∠ADP=∠A,∴△ODF∽△BAC,∴=,即=,解得r=;综上,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:连接OC,OD,如图所示.∵∠CAB=42°,∴∠COB=84°.∵=,∴∠COD=(180°﹣∠COB)=48°,∴∠CAD=∠COD=24°.故答案为:24°.16.解:连接OD,在Rt△ABC中,∠C=90°,∠B=30°,∴∠A=60°,∴∠COD=2∠A=120°,∵AC=2,∴圆周角∠A所对的弧长为:=,故答案为:.17.解:如图,连接OF.S阴=(S扇形OFC﹣S△OFC)+(S△ABC﹣S△OFC﹣S扇形OBF)=﹣•×+×2×﹣××﹣=﹣+﹣=+,故答案为: +.18.解:连接AE,如图,∵以点A为圆心的扇形FAG与菱形的边BC相切于点E,∴AE⊥BC,在Rt△ABE中,∵AB=2,∠B=45°,∴∠BAE=45°,AE=AB=×2=2,∵四边形ABCD为菱形,∴AD∥BC,∴∠DAE=∠BEA=90°,∴的弧长==π.故答案为π.三.解答题(共6小题)19.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,在△ABO与△AFO中,,∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;(2)解:连接PF,FC,FO并延长交⊙O于G,则∠G=∠ACF,∠G+∠PFG=90°,∵AF是⊙O的切线,∴∠AFG+∠PFG=90°,∴∠AFP=∠G=∠ACF,∵∠FAP=∠A CF,∴△AFP∽△ACF,∴=,∴AF2=AP•AC,∴AF==2,∴AB=AF=2,∵AC=6,∴BC==2,∴AO==3,∵△ABO∽△AOE,∴,∴=,∴AE=3.22.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC ﹣S扇形BOC=12﹣=12﹣4π.23.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.24.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠A DO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形O BED的外接圆面积S2的比为:.。
人教版六年级数学上册《圆》单元综合复习练习题(含答案)题号一二三四五六总分得分一、填空题1.一只挂钟的分针长10厘米,经过1小时,分针尖端走过的路程为( )厘米。
2.在一个半径是2厘米的圆内,两端都在圆上的最长线段是( )厘米;在一个长是8厘米、宽是6厘米的长方形中画一个最大的圆,这个圆的周长是( )厘米。
3.汽车车轮的半径是0.3米,它滚动1圈前进( )米,要滚动1884米,需要滚动( )圈。
4.下列图形中,正方形的面积都是4平方厘米。
(1)图1圆形的面积是( )平方厘米。
(2)图2圆形的面积是( )平方厘米。
(3)图3圆形的面积是( )平方厘米。
5.如图:大圆半径为8厘米,小圆半径为4厘米,则大圆与小圆的直径之比是( ),周长之比是( ),面积之比是( )。
现在让小圆沿着大圆的外侧滚动一周后回到原处,那么小圆的圆心移动的长度是( )厘米。
6.下图由一个圆形和4个完全一样的等腰直角三角形组合而成,等腰直角三角形的直角边正好是圆的半径。
涂色部分的面积比空白部分的面积大217.2cm,圆形的面积是( )2cm。
7.直径2厘米的硬币贴着一个长9厘米,宽6厘米长方形外围滚动,从A点滚动到B点时,硬币滚过的面积是( )平方厘米,硬币圆心走过的路程是( )厘米。
8.下图中阴影部分的面积是( )平方厘米。
二、判断题9.一个圆只有两条对称轴。
( )10.扇形所在的圆的半径越长,扇形就越大。
( )11.下图,圆外大正方形与圆内小正方形的面积比为3:1。
( )12.一只钟的时针长8厘米,这根时针的尖端转动一昼夜走过了25.12厘米. ( )13.一个半圆形的周长是20.56cm ,这个半圆所在的圆的周长是41.12cm 。
( )三、选择题14.在图中,( )线段最长。
A .JKB .CDC .EFD .GH15.用4根同样长的铁丝分别围成一个长方形、正方形、平行四边形和圆形,围成的( )的面积最大。
A .长方形B .正方形C .平行四边形D .圆形16.一个CD 光盘的内圆半径是2厘米,外圆半径是8厘米,这个光盘的面积是多少平方厘米?下面是四位同学得解答方法,你认为正确的是( )。
九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D .2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).18.已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A 求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E . (1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径. 22.(10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B . (1)求证:直线AE 是⊙O 的切线;(2)若∠D=60°,AB=6时,求劣弧AC 的长(结果保留π).O E D CB A参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1.14.6.15.3π.16.17.18.证明:(1)∵AB为⊙O的直径∴∠D=90°, ∠A+∠ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,∠D=90°,BD=6∴OC⊥BD∴BE=12BD=3∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =• ∵CE=4, ∴94OE = ∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析. 21.(1)证明见解析;(2)⊙O 的半径为7.5. 22.(1)证明见试题解析;(2)2π.。
第24章圆一.选择题(共8小题)1.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个2.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外3.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C.D.54.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB =100°,则∠ACB的度数为()A.35°B.40°C.50°D.80°5.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4 C.D.6.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.7.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是弧AD的中点,连接BD 并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.则下列说法中正确的个数为()①CO⊥AD;②∠COB=2∠GDC;③P是△ACQ的外心;④若tan∠ABC=,CF=8,则CQ=;⑤(FP+PQ)2=FP•FG;⑥PQ=QD.A.3 B.4 C.5 D.68.如图,已知AB=12,点C、D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,则下列说法中正确的有()①△EFP的外接圆的圆心为点G;②△EFP的外接圆与AB相切;③四边形AEFB的面积不变;④EF的中点G移动的路径长为4.A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为cm.10.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.11.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.12.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB 的延长线分别相交于点E、F,则图中阴影部分的面积为.15.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.16.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为s时,BP与⊙O相切.三.解答题(共6小题)17.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.18.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.19.如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD.20.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.21.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.22.如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.参考答案一.选择题(共8小题)1.解:①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过圆心的直线才是它的对称轴.故选D.2.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.3.解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选:A.4.解:连OA,OB,如图,∵A,B,O,D都在⊙O上,∴∠D+∠AOB=180°,而∠ADB=100°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选:B.5.解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=AB sin∠BAC=6=.故选:D.6.解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.7.①证明∵C是弧AD的中点,∴∴弧AC=弧CD,∴CO⊥AD;②∵四边形ABDC是圆内接四边形,∴∠GDC=∠BAC,∵∠COB=2∠BAC,∴∠COB=2∠GDC;③证明:∵C是弧AD的中点,∴弧AC=弧CD,∴∠CAD=∠ABC,∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又∵CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△PCQ中,PC=PQ,∵CE⊥直径AB,∴弧AC=弧AE,∴弧AE=弧CD,∴∠CAD=∠ACE.∴在△APC中,有PA=PC,∴PA=PC=PQ∴P是△ACQ的外心.④解:∵CE⊥直径AB于F,∴在Rt△BCF中,由tan∠ABC==,CF=8,得BF=.∴由勾股定理,得BC==,∵AB是⊙O的直径,∴在Rt△ACB中,由tan∠ABC==,BC=,∴AC=10,易知Rt△ACB∽Rt△QCA,∴AC2=CQ•BC,∴CQ==;⑤证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,又∵CF⊥AB,∴∠ABG+∠G=90°,∴∠DAB=∠G;∴Rt△AFP∽Rt△GFB,∴=,即AF•BF=FP•FG易知Rt△ACF∽Rt△CBF,∴CF2=AF•BF(或由射影定理得)∴FC2=PF•FG,由③,知PC=PQ,∴FP+PQ=FP+PC=FC∴(FP+PQ)2=FP•FG;⑥由题目条件无法得到PQ=QD.故选:C.8.解:如图,分别延长AE、BF交于点H.∵等腰Rt△APE和等腰Rt△PBF,∴∠A=∠FPB=45°,∠B=∠EPA=45°,∴AH∥PF,BH∥PE,∠EPF=180°﹣∠EPA﹣∠FPB=90°,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也为PH中点,即在P的运动过程中,G始终为PH的中点,∴G的运行轨迹为△HCD的中位线MN.∵CD=12﹣2﹣2=8,∴MN=4,即G的移动路径长为4.故④EF的中点G移动的路径长为4,正确;∵G为EF的中点,∠EPF=90°,∴①△EFP的外接圆的圆心为点G,正确.∴①④正确.连接PG,若GP与PF相等,△EFP的外接圆与一定与AB相交,只有当P是AB中点,此时GP⊥AB时,△EFP的外接圆与AB才相切,所以错误,故②错误;∵点P从点C沿线段CD向点D运动(运动到点D停止),易证∠EPF=90°,所以四边形面积便是三个直角三角形的面积和,设cp=x,则四边形面积S=∴AP不断增大,∴四边形的面积S也会随之变化,故③错误.故选:B.二.填空题(共8小题)9.解:连接OA,∵OC⊥AB,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC===4cm,∴AB=2AC=8cm.故答案为:8.10.解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.11.解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.12.解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.13.解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.14.解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG﹣S扇形)+S扇形FBE=2×(﹣)+=+.故答案为:+.15.解:连接OT、OD、DT,过O作OM⊥AD于M,∵OA=OT,AT平分∠BAC,∴∠OTA=∠OAT,∠BAT=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PC⊥AC,∴OT⊥PC,∵OT为半径,∴PC是⊙O的切线,∵OM⊥AC,AC⊥PC,OT⊥PC,∴∠OMC=∠MCT=∠OTC=90°,∴四边形OMCT是矩形,∴OM=TC=,∵OA=2,∴sin∠OAM=,∴∠OAM=60°,∴∠AOM=30°∵AC∥OT,∴∠AOT=180°﹣∠OAM=120°,∵∠OAM=60°,OA=OD,∴△OAD是等边三角形,∴∠AOD=60°,∴∠TOD=120°﹣60°=60°,∵PC切⊙O于T,∴∠DTC=∠CAT=∠BAC=30°,∴tan30°==,∴DC=1,∴阴影部分的面积是S梯形OTCD﹣S扇形OTD=×(2+1)×﹣=.故答案为:.16.解:连接OP;∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=3cm,∴==π,圆的周长为:6π,∴点P运动的距离为π或6π﹣π=5π;∴当t=1或5时,有BP与⊙O相切.三.解答题(共6小题)17.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.18.解:∵OB=OC∴∠OCB=∠OBC=40°(2分)∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)又∵OA=OC∴∠OAC==15°(6分)19.证明:∵AD=BC,∴,∴,即,∴AB=CD.20.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AOD=∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°,∵OA=OD,∴∠DAO=∠ADO===55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===2,∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=4,∴DE=OD﹣OE=4﹣.21.(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.22.(1)证明:∵=,∴∠BAD=∠ACD,∵∠DCE=∠BAD,∴∠ACD=∠DCE,即CD平分∠ACE;(2)解:直线ED与⊙O相切.理由如下:连结OD,如图,∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:作OH⊥BC于H,则四边形ODEH为矩形,∴OD=EH,∵CE=1,AC=4,∴OC=OD=2,∴CH=HE﹣CE=2﹣1=1,在Rt△OHC中,∠HOC=30°,∴∠COD=60°,∴阴影部分的面积=S扇形OCD﹣S△OCD =﹣•22=π﹣.。
第一单元圆易错题练习卷(单元测试)-小学数学六年级上册北师大版一、选择题1.大圆的半径等于小圆的直径,大圆面积是小圆面积的( )倍。
A .2B .4C .8D .162.圆的半径扩大3倍,它的周长扩大3倍,它的面积扩大( )倍。
A .3B .6C .9D .123.一条半径为r 厘米的半圆,它的周长是( )厘米。
A .r π+rB .2r πC .2r π+() D .12r π4.下面说法不对的是( )。
A .半径等于直径的一半B .车轮滚动一周所行驶的路程等于车轮的周长C .任意一个圆都有无数条对称轴D .一个圆的两条直径的交点是这个圆的圆心 5.两个圆的周长相等,那么这两个圆的面积( )。
A .一定不相等B .一定相等C .可能相等D .无法确定6.如图,从A 到B 有两条路,走哪条路近?( )A .①B .①C .同样近D .无法确定7.把一根铁丝围成一个圆,半径正好是a 分米,如果把这根铁丝围成一个正方形,它的边长是( )分米。
A .1.57aB .3.14aC .6.28aD .3.14a28.如图三幅图中阴影部分的面积相比较。
( )A.甲的面积大B.乙的面积大C.丙的面积大D.同样大二、填空题9.如下图,大圆的直径是( )cm,小圆的半径是( )cm,长方形的周长是( )cm。
10.某地区修了一个周长约为251.2dm的圆形蓄水池,它的占地面积是( )m2。
11.用26米长的篱笆围成一个圆形苗圃,篱笆接头处用去0.88米。
苗圃的面积( )平方米。
12.如果圆、长方形、正方形的周长相等,( )的面积最大,( )的面积最小。
13.在一个周长是40分米的正方形中画一个最大的圆,这个圆的半径是( ),周长是( ),面积是( )。
14.把一个圆分成若干等份,然后将每份剪开,再拼成一个近似的平行四边形。
这个平行四边形的底相当于( ),这个平行四边形的高相当于( ),圆的面积相当于( ),所以圆的面积公式是( )。
圆练习题及答案一、选择题1. 已知圆的半径为r,圆的面积是:A. πr^2B. 2πr^2C. πrD. r^22. 圆的周长公式是:A. 2πrB. πrC. 2rD. r3. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 2厘米D. 1厘米4. 如果一个圆的周长是12π厘米,那么它的半径是:A. 3厘米B. 6厘米C. 12厘米D. 24厘米5. 圆内接四边形的对角线:A. 相等B. 垂直C. 平行D. 以上都不对二、填空题1. 一个圆的半径为7厘米,那么它的面积是______平方厘米。
2. 圆的周长与其直径的比值是______。
3. 如果圆的半径增加1厘米,那么它的面积将增加______平方厘米。
4. 圆的内接正六边形的边长等于______。
5. 圆的外切正三角形的边长是圆的直径的______倍。
三、解答题1. 一个圆的半径为4厘米,求它的周长和面积。
2. 已知一个圆的周长为20π厘米,求它的半径。
3. 一个圆内接一个正三角形,如果正三角形的边长为6厘米,求圆的半径。
4. 一个圆的直径为14厘米,求它的内接正方形的边长。
5. 已知一个圆的面积为π平方厘米,求圆的半径。
答案:一、选择题1. A2. A3. A4. B5. A二、填空题1. 3.5π2. π3. 2π4. 半径5. 3三、解答题1. 周长:8π厘米,面积:16π平方厘米。
2. 半径:10厘米。
3. 半径:2√3厘米。
4. 边长:7√2厘米。
5. 半径:1厘米。
人教版六年级上册数学第五单元《圆》练习题一、选择题1.下面各图形中,对称轴最多的是()A.正方形B.等边三角形C.扇形D.圆2.在长方形、正方形、圆、扇形中,只有1条对称轴的图形有()种。
A.1 B.2 C.3 D.43.周长相等的正方形、长方形和圆中,面积最大的是()A.正方形B.长方形C.圆D.无法判断4.把一个直径是10cm的圆沿直径分成两个半圆,这两个半圆的周长之和是()A.31.4cm B.41.4cm C.51.4cm D.61.4cm5.大圆的周长是小圆周长的2倍,小圆的面积是6dm2,大圆的面积是()A.12dm2B.24dm2C.36dm2D.18dm26.大圆的半径与小圆的直径相等,小圆的面积是大圆面积的()A.12B.14C.18二、填空题7.在同圆或等圆中,圆的周长是半径的( )倍。
8.在同一个圆中,半径是直径( ),直径与半径的比是( )9.把一个直径8cm的圆沿直径对折,剪成两个半圆,每个半圆的周长是( )cm,面积是( )cm210.在一个边长是6厘米的正方形里剪一个最大的圆,这个圆的周长是( )厘米,面积是( )平方厘米。
11.一个圆的半径是5分米,它的周长是( )分米,它的面积是( )平方分米。
12.将一个直径是6厘米的圆形纸片沿着直径对折一次,得到的一个半圆形纸片的周长是( )厘米,面积是( )平方厘米。
13.圆的半径扩大到原来的10倍,他的周长就扩大到原来的( )倍,面积就扩大到原来的( )倍。
14.在一张宽6厘米、长9厘米的长方形纸上画一个最大的圆,这个圆的直径是( ),周长是( ),面积是( )15.要画一个周长是6.28分米的圆,圆规两脚间的距离应是( )分米。
16.下图圆的面积是62.8cm2,正方形的面积是( )cm217.一种螺丝垫圈如图。
这个垫圈的直径是20cm,中间有一个边长是8cm的正方形的孔。
这个垫圈的面积是( )cm218.下图是一个半圆形,它的周长是( )厘米,面积是( )平方厘米。
2022-2023学年北师大版九年级数学下册《第3章圆》单元综合练习题(附答案)一.选择题1.已知扇形的半径为6,圆心角为120°,则它的面积是()A.B.3πC.5πD.12π2.如图,CD是⊙O的直径,A,B是⊙O上的两点,若∠ABD=15°,则∠ADC的度数为()A.55°B.65°C.75°D.85°3.如图,OA是⊙O的半径,弦BC⊥OA,垂足为D.连接AC.若BC=,AC=3,则⊙O的半径长为()A.9B.8C.D.34.如图,⊙O的半径为,AB与CD为⊙O的两条平行弦,∠CDE=30°,AD=2,则弦BE的长为()A.3B.3.5C.D.5.如图,在正方形网格中,点A,B,C,D,O都在格点上.下列说法正确的是()A.点O是△ABC的内心B.点O是△ABC的外心C.点O是△ABD的内心D.点O是△ABD的外心6.如图,在平面直角坐标系中,以M(2,4)为圆心,AB为直径的圆与x轴相切,与y 轴交于A,C两点,则点B的坐标是()A.(4﹣2,4)B.(4,4﹣)C.(4,4﹣2)D.(4,2﹣3)7.我国古代数学家刘徽利用圆内接正多边形创立了“割圆术”,现将半径为2的圆十二等分构造出2个矩形和1个正方形(如图),则阴影部分的面积是()A.1B.C.D.8.正六边形的周长为6,则它的面积为()A.B.C.D.9.如图,⊙O的直径AB为10cm,弦BC为8cm,∠ACB的平分线交⊙O于点D,△ADB 的内切圆半径是()A.B.5(﹣1)C.5(+1)D.10.如图,AB是⊙O的直径,∠ACB的平分线交⊙O于点D,连接AD,BD,给出下列四个结论:①∠ACB=90°;②△ABD是等腰直角三角形;③AD2=DE•CD;④AC+BC=CD,其中正确的结论个数是()A.4个B.3个C.2个D.1个二.填空题11.点P为⊙O外一点,直线PO与⊙O的两个公共点为A、B,过点P作⊙O的切线,点C为切点,连接AC.若∠CPO=50°,则∠CAB为°.12.已知⊙O的半径是4,点P到圆心O的距离d为方程x2﹣4x﹣5=0的一个根,则点P 在⊙O的.(填“内部”、“外部”、“上”)13.如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF 作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.14.李老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题.操作学具时,点Q在轨道槽AM上运A动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动.图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠P AQ=30°,PQ=6时,可得到形状唯一确定的△P AQ;②当∠P AQ=90°,PQ=10时,可得到形状唯一确定的△P AQ;③当∠P AQ=150°,PQ=12时,可得到形状唯一确定的△P AQ;其中所有正确结论的序号是.15.如图,点A,B,C,D在⊙O上,弧CB=弧CD,∠CAD=28°,∠ACD=50°,则∠ADB=.16.如图,在⊙B中,弧AC所对的圆心角∠ABC=50°,点E是弧AC上的动点,以BC、CE为邻边构造平行四边形BCED.当∠A=°时,线段AD最短.三.解答题17.如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB 边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=6,DE=5,求⊙O的直径.18.如图,线段AB=10,AC=8,点D,E在以AB为直径的半圆O上,且四边形ACDE 是平行四边形,过点O作OF⊥DE于点F,求AE的长.19.如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.(1)求证:CD是半圆O的切线.(2)若AD=20,CD=50,求BC和AB的长.20.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD =126°,求∠AGB的度数.21.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,以BD为直径的⊙O交AB 于点E,交AD的延长线于点F,连结EF,BF.(1)求证:EF=BF.(2)若CD:BD=1:3,AC=2,求EF的长.22.如图,有一个直径MN=4的半圆形纸片,其圆心为点P,从初始阶段Ⅰ位置开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中位置Ⅰ中的MN平行于数轴,且半⊙P 与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为;位置Ⅱ中的半⊙P与数轴位置关系是;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过的图形的面积;(4)求OA的长.(结果保留π)23.如图,AB是⊙O的直径,CA与⊙O相切于点A,且CA=BA.连接OC,过点A作AD ⊥OC于点E,交⊙O于点D,连接DB.(1)求证:△ACE≌△BAD;(2)连接CB交⊙O于点M,交AD于点N.若AD=12,求MN的长.参考答案一.选择题1.解:S扇形==12π,故选:D.2.解:∵CD是直径,∴∠CAD=90°,∵∠ACD=∠ABD=15°,∴∠ADC=90°﹣15°=75°,故选:C.3.解:连接AC,OC,∵CD⊥OA,垂足为D,BC=,∴∠ADC=∠ODC=90°,CD=BC=,∵AC=3,∴AD=,∵OA=OC,∴OD=OC﹣AD=OC﹣1,在Rt△OCD中,OC2=CD2+OD2,即OC2=()2+(OC﹣1)2,解得OC=,即⊙O的半径长为,故选:C.4.解:∵AB∥CD,连接OC,OE,BC、CE,∵∠CDE=30°,∴∠COE=60°,∠CBE=∠CDE=30°,∴△OCE是等边三角形,∴CE=,过点C作CH⊥BE交BE于点H,在Rt△BCH中,CH==1,BH=,在Rt△CEH中,,∴.故选:D.5.解:根据点A,B,C,D,O都在正方形网格的格点上.可知:点O到点A,B,D的三点的距离相等,所以点O是△ABD的外心,故选:D.6.解:设以AB为直径的圆与x轴相切于点D,连接MD,BC,则MD⊥x轴,∵点M的坐标为(2,4),∴CE=BE=2,BM=DM=4,∵AB为圆的直径,∴AC⊥BC,∴BC∥x轴,∴BC=2CE=4,在Rt△BME中,由勾股定理得:ME===,∴DE=MD﹣ME=4﹣,∴点B的坐标为(4,4﹣),故选:C.7.解:如图,连接OA、OB、OC、OD,过点O作OM⊥AD,垂足为M,由圆的对称性可知,点A、点D是⊙O的三等分点,四边形BCFE是正方形,∴∠AOD=×360°=120°,∠BOC=×360°=90°,在Rt△AOM中,OA=2,∠AOM=60°,∴OM=OA=1,AM=OA=,在Rt△BOM中,∠BOM=45°,OM=1,∴BM=OM=1,∴AB=AM﹣BM=﹣1,∴8个阴影三角形的面积和为:×(﹣1)(﹣1)×8=16﹣8,故选:C.8.解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,在Rt△BOM中,OM===,∴S△OBC=BC•OM=×1×=,∴该六边形的面积为:×6=.故选:D.9.解:∵AB是直径,∴∠ACB=90°,∠ADB=90°,∵AB=10cm,AC=6cm,∴BC==8(cm),∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∵∠ADB=90°,∴AD2+BD2=AD2,∴AD2+AD2=102,∴AD=5cm,∴AD=BD=5cm;∴△ABD等腰直角三角形,设△ABD内切圆的圆心为I,与AD,BD,AB切于点E,G,F,半径为rcm,得正方形DGIE,∴AE=AF=BG=BF=AD﹣DE=5﹣r,∴5﹣r+5﹣r=10,解得r=5(﹣1)cm,∴△ADB的内切圆半径是5(﹣1)cm.故选:B.10.解:如图,延长CA到点F,使AF=BC,连接DF,∵AB是⊙O的直径,∴∠ACB=90°,故①正确;∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形,故②正确;∴=,∴∠ACD=∠EAD,∵∠ADC=∠EDA,∴△ADC∽△EDA,∴=,∴AD2=DE•CD,故③正确;∵四边形ADBC是⊙O的内接四边形,∴∠F AD=∠DBC,在△F AD和△DBC中,,∴△F AD≌△DBC(SAS),∴FD=CD,∠ADF=∠BDC,∵∠ADC+∠BDC=90°,∴∠ADC+∠ADF=90°,∴∠FDC=90°,∴△CDF是等腰直角三角形,∴CF=CD,∴AC+AF=AC+BC=CD,故④正确.∴正确的结论是①②③④.故选:A.二.填空题11.解:如图1,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵∠CPO=50°,∴∠OCP=40°,∵OC=OA,∴∠A=∠ACO=∠OCP=20°;如图2,∠CBA=20°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=70°.综合以上可得∠CAB为20°或70°.故答案为:20或70.12.解:解方程x2﹣4x﹣5=0,得x=5或﹣1,∵d>0,∴d=5,∵⊙O的半径为4,∴d>r,∴点P在⊙O外.故答案为:外部.13.解:延长FO交AD于点J,设AE=x.∵四边形ABCD是矩形,∴∠D=∠C=∠A=∠B=90°,AD∥CB,AD=BC,∵OF⊥BC,∴FJ⊥AD,∴∠AJF=∠FJD=90°,∴四边形ABFJ是矩形,四边形CDJF是矩形,∴AB=FJ=CD,CF=DJ=3,∵OJ⊥DB′,∴DJ=JB′=3,∴AD=BC=3+3+3=9,∴BF=BC﹣CF=6,由翻折的性质可知,FB=FB′=6,∴FJ===3,∴AB=JF=3,在Rt△AEB′中,则有x2+32=(3﹣x)2,∴x=,∴AE=.故答案为:.14.解:①当∠P AQ=30°,PQ=6时,以P为圆心,6为半径画弧,与射线AM有两个交点,则△P AQ的形状不能唯一确定,故①错误;②当∠P AQ=90°,PQ=10时,以P为圆心,10为半径画弧,与射线AM有一个交点,Q点位置唯一确定,则可得到形状唯一确定的△P AQ,故②正确;③当∠P AQ=150°,PQ=12时,以P为圆心,12为半径画弧,与射线AM有一个交点,Q点位置唯一确定,则可得到形状唯一确定的△P AQ,故③正确;故答案为:②③.15.解:∵=,∠CAD=28°,∴∠CAD=∠CAB=28°,∴∠DBC=∠DAC=28°,∵∠ACD=50°,∴∠ABD=∠ACD=50°,∴∠ADB=180°﹣∠DAB﹣∠ABD=180°﹣50°﹣28°﹣28°=74°.故答案为:74°.16.解:如图,延长CB交⊙B于点F,连接BE,AF,DF.∵四边形BCED是矩形,∴BC=DE,BC∥DE,∴BF=BC=DE,BF∥DE,∴四边形BEDFF是平行四边形,∴FD=BE=定值,∴点的运动轨迹是以F为圆心,FB长为半径的圆,∵AD≥AF﹣DF,AF,DF是定值,∴当A,D,F共线时,AD最短,此时∠BAD=∠AFB=∠ABC=25°,故答案为:25.三.解答题17.解:(1)直线DE与⊙O相切,理由:连接DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∵OD是⊙O的半径,∴DE与⊙O相切;(2)由(1)得,∠CDB=90°,∵CE=EB,∴DE=BC,∴BC=10,∴BD===8,∵∠BCA=∠BDC=90°,∠B=∠B,∴△BCA∽△BDC,∴=,∴,∴,∴⊙O直径的长为.18.解:过点E作EG⊥AB于点G,连接OE,则OE=OA=,∠EGO=90°,∵四边形ABCD是平行四边形,∴DE=AC=8,DE∥AB,∵OF⊥DE,即∠OFE=90°,∴EF==4,∠FOG=∠OFE=90°,∴四边形OFEG是矩形,∴OG=EF=4,∴AG=5﹣4=1,在Rt△OEG中,EG=,在Rt△AGE中,AE=.19.(1)证明:过点O作OE⊥CD,垂足为点E,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD﹣DE=50﹣20=30,∴BC=30,∴CF=BC﹣BF=10,在Rt△CDF中,由勾股定理得:DF===20,∴AB=DF=20,∴BC的长为30,AB的长为20.20.解:∵BD是⊙O的直径,∴∠BAD=90°,∵,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.所以∠AGB的度数为108°.21.(1)证明:连接DE,如图,∵BD为直径,∴∠DBF=∠DEB=90°,∵AD是△ABC的角平分线,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠ABF=90°,∴∠4=∠ABF,∵∠4=∠5,∠5=∠6,∴∠6=∠ABF,∴EF=BF;(2)解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DE=DC,∵CD:BD=1:3,∴DE:BD=1:3,∵∠DEB=∠C,∠DBE=∠ABC,∴△BDE∽△BAC,∴=,∴==3,∴AB=3AC=3×2=6,∴BC===8,∴CD=BC=2,∴AD==2,∵∠1=∠2,∠C=∠AFB,∴△ACD∽△AFB,∴=,即=,∴BF=2,∴EF=2.22.解:(1)∵⊙P的直径MN=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅲ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2;(3)由弧长公式可得,点N所经过路径长为=2π,∵S半圆==2π,S扇形==4π,∴半⊙P所扫过图形的面积为2π+4π=6π;(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,∴OA的长为:π+4+π=π+4.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AD⊥OC,∴∠AEC=90°,∴∠ADB=∠AEC,∵CA是⊙O的切线,∴∠CAO=90°,∴∠ACE=∠BAD,在△ACE和△BAD中,,∴△ACE≌△BAD(AAS);(2)解:连接AM,如图,∵AD⊥OC,AD=12,∴AE=DE=AD=6,∵△ACE≌△BAD,∴BD=AE=6,CE=AD=12,在Rr△ABD中,AB==6,在Rt△ABC中,BC==6,∵∠CEN=∠BDN=90°,∠CNE=∠BND,∴△CEN∽△BDN,∴==2,∴BN=BC=2,∵AB是⊙O的直径,∴∠AMB=90°,即AM⊥CB,∵CA=BA,∠CAB=90°,∴BM=BC=3,∴MN=BM﹣BN=.。
人教版六年级上册数学第五单元《圆》练习题(附答案)一、单选题1.一根铁丝正好围成一个直径是8dm的圆,改围成正方形,它的边长是()。
A.3.14B.6.28C.12.56D.25.12 2.如图,将一个圆沿半径剪开,拼成一个近似的长方形,圆的面积是()cm2。
A.6.28B.9.42C.12.56D.3.14 3.如果小圆半径是大圆半径的13,那么小圆面积与大圆面积的比是()A.1:3B.9:4C.3:1D.1:9 4.圆A和圆B的直径相等,圆A的面积比圆B的面积().A.大B.小C.相等5.一个圆形的半径按3:1比例放大后,圆的面积放大了()倍。
A.9B.6C.36.下列说法正确的有()句。
①“一节课的时间是23小时”,这里的23是把一节课的时间看作单位“1”。
②两个质数的乘积一定是合数。
③一个花坛有7平方米,种了4种花。
平均每种花占地47平方米。
④等式两边同时乘或除以一个相同的数,等式依然成立。
⑤一个圆的周长是这个圆半径的2π倍。
A.2B.3C.4D.5二、判断题7.画一个周长是78.5厘米的圆,圆规两脚间的距离应为25厘米。
()8.下图中∠ACB是圆心角。
()9.两个相同的半圆拼成一个整圆后,面积和周长都不变。
()10.当一个圆的半径是2厘米时,它的周长和面积相等。
()11.两个半圆可以拼成一个整圆。
()三、填空题12.一个圆的半径缩小到原来的14,这个圆的直径缩小到原来的()()。
13.用一根长31.4dm的绳子围成一个圆,这个圆的直径是dm,面积是dm2。
14.如图,大圆和小圆的面积比是,如果小圆的面积是12平方厘米,那么,阴影部分的面积是。
15.如图,半圆的半径是2分米,则封闭图形的周长为分米。
16.一个圆,当沿直径截去它的一半之后,剩下部分的周长比原来少了3.42cm,那么原来这个圆的面积是cm2。
17.如图,在长方形中有六个大小相等的圆,已知这个长方形的长是36厘米,则圆的半径是厘米,长方形的周长是厘米。
第一单元《圆》单元练习2022—2023北师大版六年级上册(含答案)一、选择题1. 用两根都是37.68米长的绳子分别围成一个圆形和一个正方形,()的面积大。
A.圆 B.正方形 C.无法确定 D.一样大2. 有大、小两个圆,大圆半径是小圆半径的3倍,大圆的面积是小圆面积的()倍。
A.9 B.6 C.3 D.13. 圆周率π是一个()。
A.有限小数 B.无限循环小数C.无限不循环小数 D.以上都不对4. 圆周率 ()3.14。
A.大于 B.等于 C.小于5. 两个圆的面积不相等,原因是它们()。
A.圆心的位置不同 B.圆周率不同 C.直径不相等二、填空题6. 一个圆的直径扩大到原来的4倍,它的周长扩大到原来的_______倍,面积扩大到原来的_______倍。
7. 一个时钟的时针长8cm,分针长10cm,一昼夜时针尖端走________cm,分针尖端走________cm。
(π取3.14)8. 用一张长10dm、宽8dm的长方形纸剪一个最大的圆,这个圆的周长是( )dm,面积是( )2dm。
9. 圆的直径是8cm,则圆的面积是( ),周长是( )。
10. 如图,正方形面积是16平方厘米,则圆面积是( )平方厘米。
11. 一个圆形的花坛,它的半径是4米,在花坛的四周辅一条2米宽的圆环小路,这条小路的面积是( )平方米。
12. 在一张边长为10cm的正方形纸上画一个最大的圆,这个圆的周长是( )cm,面积是( )cm2。
13. 在一个边长是4厘米的正方形中画一个最大的圆,圆规两脚之间的距离是__________厘米,如果画一个最大的半圆,圆规两脚之间的距离是_________厘米。
14. 大圆的半径等于小圆的直径,大、小圆的面积和是150cm2,大圆的面积是( )cm2,小圆的面积是( )cm2。
15. 用10.28厘米的钢丝围成一个半圆,这个半圆的面积是( )平方厘米。
三、判断题16. 已知一个圆的半径是2cm,另一个圆的直径是4cm,则后者的周长长。
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC 于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB 的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O 交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.。
人教版六年级数学上册第五单元《圆》课后练习题(附答案)1.判断。
(对的画“√”,错的画“✕”)(1)把圆形纸片按不同的方向对折,折痕一定都通过圆心。
()(2)圆的周长是这个圆的直径的3.14倍。
()(3)圆越大,圆周率越大。
()(4)一个半圆只有一条对称轴。
()(5)若大圆的半径等于小圆的直径,则大圆的面积是小圆的面积的4倍。
()2.计算题。
(1)求下面各图形的面积和周长。
(2)求下图中阴影部分的面积。
3.一根圆柱形木材,它的横截面的周长是1.884m,这根木材的横截面的面积约是多少平方米?(得数保留两位小数)4.一台压路机前轮的半径是0.4m,如果前轮每分钟转动6周,10分钟可以从路的一端行到另一端,这条路大约有多长?参考答案1.(1)√(2)×(3)×(4)√(5)√2.(1)3.14×8=25.12(cm) 3.14×(8÷2)²=50.24(cm²)3.14×3×2÷2+3×2=15.42(cm) 3.14×3²÷2=14.13(cm²)(2)6×4-3.14×(4÷2)²=11.44(dm²)3.1.884÷3.14÷2=0.3(m) 3.14×0.3²≈0.28(m²)答:这根木材的横截面的面积约是0.28m²。
4.3.14×0.4×2×6×10=150.72(m)答:这条路大约长150.72m。
人教版数学六年级上册单元练习卷(易错题)第五单元圆学校:___________姓名:___________班级:___________考号:___________一、选择题1.下面各圆中的线段,()是圆的半径。
A.B.C.D.2.一个圆的周长是31.4cm,那么它的面积是()。
A.314cm2B.78.5cm2C.15.7cm2D.50.24cm2 3.小圆的直径等于大圆的半径,那么大圆的面积是小圆的()倍。
A.6B.4C.8D.24.把一个圆的半径扩大到原来的3倍,圆的面积扩大到原来的()倍。
A.6B.3C.95.用圆规画一个面积是7.065平方厘米的圆,圆规两脚间的距离应该是()厘米。
A.1B.1.5C.2二、填空题6.在一个圆里有( )条直径,直径的长度是半径的( )倍。
7.用5m长的铁条做直径是20cm的圆形铁环,最多可以做( )个。
8.画圆时,圆规两脚间的距离是6厘米,画出的圆的直径是______,周长是______。
9.圆的半径扩大到原来的3倍,周长扩大到原来的( )倍;面积扩大到原来的( )倍。
10.一个圆的直径是6分米,它的面积是( )平方分米。
三、判断题11.圆的直径都相等。
( )1113.直径是半径的2倍,半径是直径的1。
( )214.在同一个圆中,它的周长和直径的比值是3.14。
( )15.一个圆的周长是18.84厘米,那么这个半圆的周长就是9.42厘米。
( )四、图形计算16.计算下图的周长。
17.计算下图阴影部分的面积。
18.计算阴影部分的面积。
(单位:平方厘米)五、解答题19.一个圆形花坛,直径为10米,经过扩建,直径增加到16米,花坛占地面积增加了多少平方米?20.一块正方形土地的周长是80米,在里面围出一个最大的圆种花,其他边角地上种草坪,种草坪的面积是多少平方米?21.画一个直径为4厘米的圆。
要求:①要标明圆心。
①要标明半径是多少。
①要计算出这个圆周长是多少厘米。
人教版六年级上册5.1 圆的认识练习卷一、选择题1.一个环形,外圆直径是40厘米,环的宽度是10厘米,它的内圆半径是()A.10厘米B.20厘米C.30厘米D.50厘米2.自行车后轮的半径是前轮的1.5倍,后轮转动12周,前轮转了()周.A.8B.12C.183.圆周率表示()。
A.圆的周长B.圆的面积与直径的倍数关系C.圆的周长与直径的倍数关系D.圆的面积4.如图所示的示意图中(单位:厘米),尺上圆的箭头指向断尺的“10”刻度处.尺上的圆向右滚动一周时,圆上的箭头落在()A.10~20之间B.20~30之间C.30~40之间D.40~50之间5.两个圆的面积相等,这两个圆的周长().A.不一定相等B.一定相等C.一定不相等二、填空题6.在一张长9cm、宽2cm的长方形纸上,最多可剪出( )个直径是1cm的圆。
7.等边三角形有( )条对称轴;正方形有( )条对称轴;圆有( )条对称轴。
8.填表格9.井盖做成圆的主要是为了.10.填空。
d=( )cm d=( )cm11.圆是轴对称图形,所有的( )所在的直线都是它的对称轴,( )决定圆的位置,( )决定圆的大小。
三、判断题12.同一个圆内,半径是直径的一半.( )13.图形是轴对称图形。
( )14.半圆形和圆环都是轴对称图形。
( )15.由同一平面上的两个圆组成的图形一定是轴对称图形。
( )16.圆的周长与它直径的比就是圆周率,用字母“π”表示。
( )四、作图题17.画出下面图形的对称轴.五、解答题18.求下面图形阴影部分面积(单位:cm)19.刘大伯家的一个水桶,直径40厘米,要用多长的铁丝,才能把这个水桶绕上2圈(接头处除外)?参考答案:1.A在圆环中,圆环的宽度=(外圆的直径-内圆的直径)÷2,然后把内圆的直径除以2就可以解得内圆的半径.【详解】它的内圆半径是(40-10×2)÷2=10厘米.故答案为A.2.C【详解】解:设前轮半径为r,那么后轮半径为1.5r,后轮行的路程为:1.5r×2×π×12=36πr,前轮行的圈数为:36πr÷(2πr)=18(圈);答:前轮转动18圈.故选C.【点评】解答此题的关键是明白:前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,从而列比例求解.3.C根据圆周率的含义:圆的周长和它直径的比值叫圆周率,它是一个无限不循环小数,用π表示,π=3.1415926……;进而选择结论。
小学数学圆形练习题及答案【圆的认识】1. 如果半径为5厘米的圆的面积是多少? (答案:78.5平方厘米)2. 已知圆的直径长10米,求圆的周长。
(答案:31.4米)3. 若圆的周长为18.84米,求圆的直径。
(答案:6米)【圆的周长和面积计算】4. 半径为8厘米的圆,它的周长是多少?圆的面积是多少?(答案:周长50.24厘米;面积201.06平方厘米)5. 已知圆的周长是12.56米,求圆的半径和面积。
(答案:半径2米;面积12.56平方米)6. 已知圆的面积是50.24平方厘米,求圆的半径和周长。
(答案:半径4厘米;周长25.12厘米)【圆的综合运用】7. 一个圆形花坛的周长是15.84米,为了方便修剪,园丁要在花坛旁围一个宽度为1米的小路,求小路的面积。
(答案:50.24平方米)8. 小明要制作一个直径为20厘米的圆形糕点,求需要的糕点面团的面积。
(答案:314.16平方厘米)9. 小明画了一个半径为12厘米的圆,他想用红色油漆将圆内的面积涂成红色,求需要的红色油漆的面积。
(答案:452.16平方厘米)【圆和正方形】10. 半径为6厘米的圆,和一个正方形面积相等,求正方形的边长。
(答案:约为7.64厘米)11. 已知一个正方形的面积为100平方米,求与其面积相等的圆的半径。
(答案:约为5.64米)【圆与长度单位换算】12. 物体直径为5米,求其半径和周长。
(答案:半径2.5米;周长约为15.7米)13. 跑道的长度为1000米,求跑道的周长和直径。
(答案:周长约为628.32米;直径318.31米)【圆和其他图形的关系】14. 一个圆形花坛的直径长为10米,周围有一条宽度为2米的矩形小路,求小路的面积。
(答案:104平方米)15. 半径为5厘米的圆,和一个正方形相切,求正方形的边长和面积。
(答案:边长约为7.07厘米;面积约为49.99平方厘米)【圆的判断】16. 半径为6厘米的圆,和一个直径为8厘米的圆相切,它们的面积是否相等?(答案:不相等)17. 同心圆的半径分别为3厘米和5厘米,它们的面积是否相等?(答案:不相等)18. 一个圆的直径是另一个圆的半径的两倍,它们的周长是否相等?(答案:不相等)希望以上数学练习题能帮助到您的教学工作!。
人教版六年级数学上册《5.圆》单元过关练习题(含答案)一、填空题1.一个圆的半径是6m,周长是( )m,面积是( )m2;如果这个圆的半径增加1m,则周长增加( )m,面积增加( )m2。
2.一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是( )厘米,分针扫过的面积是( )平方厘米。
3.两个圆的半径之比是4∶3,它们的直径之比是( ),周长之比是( ),面积之比是( ),如果较大的圆的周长是12.56cm,则较小的圆的周长是( )cm。
4.一个圆的面积是314平方米,这个圆的半径是( )米,直径是( )米,周长是( )米。
5.在一个长6cm,宽3cm的长方形里画一个最大的半圆,这个半圆的直径是( )cm,周长是( )cm,面积是( )cm2。
6.把一个圆平均分成若干等份后,拼成了一个近似的长方形,这个长方形的长是3.14米,那么这个圆的周长是( )米。
7.一个圆桌的周长是314厘米,给这个圆桌做一个和桌面一样大的桌布,桌布的面积是( )平方厘米。
8.一张长方形彩纸长10cm,宽8cm。
用这张彩纸最多能剪出( )个半径是1.5cm的圆。
二、判断题9.半圆的周长就是圆周长的一半。
( )10.正方形、等腰三角形、长方形、平行四边形、圆形都是轴对称图形。
( )11.所有圆的面积与它的半径的比总是相等。
( )12.面积大小不同的两个圆,大圆周长与它直径的比等于小圆周长与它直径的比。
( )13.两个圆的周长的比是2∶3,则这两个圆的面积的比是4∶6。
( )三、选择题14.圆的周长与半径的比是()。
A.6.28∶1B.1∶3.14C.1∶2πD.2π∶1 15.如图,如果让小圆紧贴着大圆的边缘滚动一周,小圆的圆心移动的路程是()厘米。
A.πB.2πC.4πD.6π16.两只蚂蚁沿不同的路线从M点跑到N点,甲蚂蚁沿虚线跑,乙蚂蚁沿实线跑(图中曲线部分由半圆构成)。
下面四幅图中,两只蚂蚁跑的路线一样长的共有()幅。
六年级上册数学单元测试-圆练习题及答案一、单选题1.选择正确答案的选项填在括号里.半径是2厘米的圆周长和面积()A. 相等B. 无法比较C. 面积比周长大2.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘以()就能求出正确答案.A. 圆周率B. 2C. 43.一张长方形纸长12厘米,宽8厘米。
在这张长方形纸中剪一个最大的圆,这个圆的面积是()。
A. 113.04平方厘米B. 50.24平方厘米C. 96平方厘米D. 45.76平方厘米4.圆的半径扩大3倍,它的面积扩大____倍.A. 3倍B. 6倍C. 9倍D. 12倍.二、判断题5.判断.周长相等的两个圆,它们的半径相等,直径相等,面积也相等6.判断对错.一个半径是2厘米的圆,它的周长和面积相等.7.判断正误.所有圆的直径都相等.8.判断对错.一个圆的直径等于另一个圆的半径,那么这两个圆的大小相等.三、填空题9.一张圆形饭桌的面积是50.24平方分米,这张饭桌的直径是________分米?10.一个长方形的长是6 cm,宽是4 cm,在这个长方形内画一个最大的圆,圆的半径是________ cm,周长是________ cm。
11.画圆时,圆规两脚之间叉开得越大,画出的圆越________;如果圆规两脚间的距离为3 cm,所画圆的面积为________ cm2,周长为________ cm。
12.一辆汽车两个轮子之间的距离是2米,这辆汽车绕一个直径是80米的圆形广场行驶一圈,它的外侧车轮比内侧车轮多行________米。
(π≈3.14)四、解答题13.可以用绕绳法、滚动法测量圆的周长,还可以用公式来计算圆的周长,它的公式是什么呢?14.圆的半径是4厘米,阴影部分的面积是14π平方厘米,求图中三角形的面积。
五、综合题15.操作题一:(1)量出所需数据算出面积和周长.(2)在右图圆上取一点,C连接AC、CB,量出∠C=________°,像这样再画几个角,量一量这些角的度数你发现________.六、应用题16.上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过路径的长度是多少米?(得数保留一位小数,π取3.14)参考答案一、单选题1.【答案】B【解析】【解答】半径是2厘米的圆,它的周长和面积无法比较.故答案为:B.【分析】圆的周长是长度单位厘米,圆的面积是面积单位平方厘米,两者之间不能互换,因此无法比较大小.2.【答案】C【解析】【解答】解:设原来的半径为r,则圆面积为πr2,因为小明认为r为直径,则半径为r,面积为π× = πr2,所以面积缩小为原来的,因此只要乘上4就能求出正确答案.故选:C.【分析】设原来的半径为r,则圆面积为πr2;小明把半径当成直径,则圆的半径就被小明错误的认为是r,则圆面积为π×= πr2,可见面积缩小为原来的,因此只要乘上4就能求出正确答案.据此解答.3.【答案】B【解析】【解答】解:3.14×(8÷2)²=3.14×16=50.24(平方厘米)故答案为:B【分析】长方形中剪下的最大的圆的直径与长方形的宽相等,因此圆的直径是8厘米。
您的评价是对我的鼓励,我会继续努力。
5.1 圆的认识
一、用心填一填。
1.两端都在圆上的线段,()最长。
2.在同一个圆中,半径是3厘米,直径是()厘米。
3.在同圆或等圆里,所有的半径都(),所有的()也都相等。
4.圆心一般用字母()表示,半径用字母()表示,直径用字母()表示。
二、细心来判断。
1.圆是轴对称图形,圆有无数条对称轴。
()
2.通过圆心的线段叫做直径。
()
3.在同圆或等圆中,直径一定比半径长。
()
4.所有的半径都相等。
()
5.两条半径的长等于一条直径的长。
()
三、找出下面各圆的半径或直径并用字母表示。
答案:
一、1. 直径
直径 4. o r d
二、1.√ 2. × 3. √ 4. × 5. ×
三、略
四、8÷4=2)
5.2 圆的周长一、用心填一填。
1.如果用C 表示圆的周长,求周长的两个公式是( )和( )。
2.圆的周长和直径的( )叫做圆周率。
3.计算车轮滚动一周的距离,实际上是计算这个车轮的( ),如果车轮的直径是1.5米,滚动一周是( )米。
4.一个圆的半径是1分米,它的直径是( )分米,周长是( )分米。
二、细心来判断。
1.π=3.14( )
2.两个圆的直径相等,它们的周长也相等。
( )
3.小圆的圆周率比大圆的圆周率小。
( )
4.圆的直径扩大3倍,周长也扩大3倍。
( )
三、求下面各圆的周长。
5m
五、一个圆形操场的直径是80m 。
1.它的周长是多少米?
2.丫丫的小自行车车轮的直径是50cm ,骑这个自行车绕操场一周车轮大约转动多少周? 答案:
一 、1. C=2 r C= d 2. 3. 周长 4.71 4. 2 6.28 二、1. × 2. 3. × 4.
三、18.84cm 18.84cm
四、3.14×5×2=31.4(m )
五、1. 3.14×80=251.2(m ) 2. 251.2÷(3.14×0.5)=160(周)
5.3 圆的面积
一、用心填一填。
1.把一个圆平均分成若干份,剪开后可以拼成一个近似的长方形,这个长方形的面积相当于圆的( ),长方形的长相当于圆的( ),长方形的宽相当于圆的( ),又因为长方形的面积=长×宽,所以圆的面积=( ),用字母表示为( )。
2.圆规的两脚分开的距离为2厘米,用它画一个圆,这个圆的周长是( )厘米,面积是( )平方厘米。
二、细心来判断。
1.半圆的面积是整个圆面积的一半。
( )
2.一个圆的直径是6厘米,这个圆的面积是18.84平方厘米。
( )
3.两个圆的面积相等,这两个圆的直径和半径都分别相等。
( )
三、求下列各圆的面积。
四、光盘的银色部分是一个圆环,内圆半径是2cm ,外圆半径是6cm ,它的面积是多少?
五、一个圆形环岛的直径是50m ,中间是一个直径为10m 的圆形花坛,其他地方是草坪。
草坪的占地面积是多少?
答案:
一、1. 面积 周长的一半 半径 周长的一半× 半径
2. 12.56 12.56
二、1. × 2. × 3. 三、7.065 c ㎡ 78.5 c ㎡
四、3.14×()=100.48(c ㎡)
五、3.14×【(50÷2)²-(10÷2)²】=1884(㎡)
5.4 扇形
一、用心填一填。
1.扇形是由()和()围成的。
2.扇形都有一个角,角的顶点在()。
二、细心来判断。
1.圆的一部分就是扇形。
()
2.扇形有无数条对称轴。
()
3.把一个圆分成5份,每一份都一定是个扇形。
()
三、下面哪个图形的涂色部分是扇形?请在下面的括号里画“√”。
1.在一个圆内最多可以画出( )个相等的扇形。
A.180
B.无数
C.360
D.90
2.把一个圆平均分成10个扇形,圆心角都是( )。
A.90°
B.36°
C.18°
D.70°
3.下列图形中,阴影部分不是扇形的是( )。
A. B.
C. D.
4.下列图形中,阴影部分是扇形的是( )。
A. B.
C. D.
答案:
一、1. 半径弧 2. 圆心
二、1. × 2. × 3.×
三、
四、1. B 2. B 3. B 4. A
第五单元测试卷
一、填空题。
1.一个圆有()条直径,所有的直径都(),直径的长度是半径的()倍。
2.一个圆的半径是1分米,直径是()分米,周长是()分米,面积是()
平方分米。
3.圆有()条对称轴,长方形有()条对称轴。
4.要画一个周长是12.56厘米的圆,圆规两脚间的距离应定为()厘米,这个
圆的面积是()平方厘米。
5.用一张长10分米、宽8分米的纸剪一个最大的圆,这个圆的面积是()
平方分米。
6.一个时钟的时针长5厘米,它转动一周形成的图形是(),这个时针的尖端
转动一昼夜所走的路程是()厘米。
7.()个圆心角是90°的相同大小的扇形可以组成一个圆。
二、判断题。
(对的画“√”,错的画“✕”)
1.把圆形纸片按不同的方向对折,折痕一定都通过圆心。
()
2.圆的周长是这个圆的直径的
3.14倍。
()
3.圆越大,圆周率越大。
()
4.一个半圆只有一条对称轴。
()
5.若大圆的半径等于小圆的直径,则大圆的面积是小圆的面积的4倍。
()
三、选择题。
(把正确答案的序号填在括号里)
1.要画一个直径是5厘米的圆,圆规两脚之间的距离是()厘米。
A.5
B.2.5
C.10
D.15
2.一个圆的直径和一个正方形的边长相等,这个圆的面积和这个正方形的面
积的关系为()。
A.圆的面积大
B.正方形的面积大
C.两者的面积相等
D.不能比较
3.两个圆的半径比是2∶3,这两个圆的面积比是()。
A.2∶3
B.3∶2
C.4∶9
D.9∶4
4.车轮滚动一周,求所行的路程,就是求车轮的()。
A.直径
B.周长
C.面积
D.半径
四、计算题。
1.求下面各图形的面积和周长。
2.求下图中阴影部分的面积。
五、解决问题。
1.一块圆形桌布的半径是6分米,给它的周围缝上花边,花边长多少分米?这块
桌布用料多少平方分米?
2.一个直径为18米的圆形花坛,周围有一条宽1米的小路,这条小路的面积是
多少平方米?
3.一根圆柱形木材,它的横截面的周长是 1.884米,这根木材的横截面的面积
是多少平方米?(得数保留两位小数)
4.一台压路机前轮的半径是0.4米,如果前轮每分钟转动6周,10分钟可以从
路的一端行到另一端,这条路大约有多长?
5.公园里有一个圆形的养鱼池,量得养鱼池的周长是100.48米,养鱼池的中间
有一个圆形小岛,半径是6米。
这个养鱼池的水域面积是多少?
六、附加题。
如图,已知圆外面正方形的面积是15平方分米,阴影部分的面积是多少平方分米?
第五单元测试卷参考答案
一、1.无数相等22.26.283.143.无数2
4.212.56
5.50.24
6.圆62.8
7.4
二、1.√2.✕3.✕4.√5.√
三、1.B 2.B 3.C 4.B
四、1.50.24cm225.12cm 14.13cm215.42cm 2.2.86dm2
五、1.3.14×2×6=37.68(分米)
3.14×62=113.04(平方分米)
2.内圆半径:18÷2=9(米)
外圆半径:18÷2+1=10(米)
3.14×(102-92)=59.66(平方米)
3.1.884÷3.14÷2=0.3(米)
3.14×0.32≈0.28(平方米)
4.3.14×0.4×2×6×10=150.72(米)
5.100.48÷3.14÷2=16(米)
3.14×(162-62)=690.8(平方米)
六、设圆的半径为r。
大正方形的面积=2r×2r=15r2=
圆的面积=πr2=3.14×=11.775(平方分米)
小正方形的面积=r×r÷2×4=7.5(平方分米)
阴影部分的面积=11.775-7.5=4.275(平方分米)。