圆单元测试卷及答案详解 (超经典,吐血推荐)
- 格式:doc
- 大小:584.06 KB
- 文档页数:7
圆的认识单元测试题及答案一、选择题:1. 圆的周长公式是()。
A. C = πrB. C = 2πrC. C = πdD. C = 2πd2. 半径为2厘米的圆的面积是()平方厘米。
A. 12.56B. 3.14C. 4D. 6.283. 圆的直径是半径的()倍。
A. 1B. 2C. 3D. 4二、填空题:4. 圆的半径为3厘米,其周长是________厘米。
5. 一个圆的直径是8厘米,那么它的半径是________厘米。
三、判断题:6. 圆的直径是圆内最长的线段。
()7. 圆心决定圆的位置,半径决定圆的大小。
()四、简答题:8. 请简述圆的基本概念。
五、计算题:9. 已知一个圆的半径为5厘米,求这个圆的周长和面积。
六、应用题:10. 一个圆形花坛的直径是20米,如果绕着花坛走一圈,需要走多少米?如果花坛的面积是1256平方米,那么它的半径是多少米?答案:一、选择题:1. B2. A3. B二、填空题:4. 18.845. 4三、判断题:6. 正确7. 正确四、简答题:圆是一个平面上所有与定点(圆心)距离相等的点的集合。
这个定点称为圆心,距离称为半径。
圆的边界称为圆周。
五、计算题:9. 周长:C = 2πr = 2 × 3.14 × 5 = 31.4厘米面积:A = πr² = 3.14 × 5² = 3.14 × 25 = 78.5平方厘米六、应用题:10. 周长:C = πd = 3.14 × 20 = 62.8米半径:A = πr²,所以 r² = A / π,r = √(A / π) =√(1256 / 3.14) ≈ 20米结束语:通过本单元测试题,同学们应该能够更好地理解和掌握圆的基本性质和计算方法。
希望同学们能够通过练习,加深对圆的认识,提高解题能力。
圆单元测试题及答案解析一、选择题1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆的直径是圆的最长弦C. 圆的半径是圆心到圆周上任意一点的距离D. 圆的周长与直径的比值是一个常数答案:A2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 2rD. C = πd答案:B3. 如果圆的半径为3,那么它的直径是:A. 6B. 9C. 12D. 15答案:A二、填空题4. 圆的面积公式是 _______。
答案:A = πr²5. 一个圆的半径是4厘米,那么它的周长是 _______ 厘米。
答案:25.12三、简答题6. 圆的切线有哪些特点?答案:圆的切线在圆上只有一个接触点,且在该点的切线与半径垂直。
7. 圆的内接四边形有哪些性质?答案:圆的内接四边形的对角互补,即一个内角等于其对角的补角。
四、计算题8. 已知圆的半径为5厘米,求圆的周长和面积。
答案:周长 C = 2πr = 2 × 3.14 × 5 = 31.4 厘米;面积 A = πr² = 3.14 × 5² = 78.5 平方厘米。
9. 一个圆的周长是44厘米,求这个圆的半径。
答案:半径r = C / (2π) = 44 / (2 × 3.14) ≈ 7 厘米。
五、证明题10. 证明:圆的内接四边形的对角线互相平分。
答案:设圆内接四边形ABCD,连接对角线AC和BD。
由于ABCD是圆内接四边形,所以∠A + ∠C = 180°,同理∠B + ∠D = 180°。
根据圆周角定理,∠BAC和∠BDC是圆心角的一半,所以它们相等。
同理∠CAD和∠ABD也相等。
因此,△ABC和△ADC是全等的,所以AC平分BD。
同理,BD平分AC。
所以圆的内接四边形的对角线互相平分。
六、应用题11. 一个圆形花坛的直径是20米,求花坛的周长和面积。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
六年级上<圆>单元测试卷一、填空题、(30分)1、(4分)通过并且都在的线段叫做直径、2、(4分)当π取3.14时,16π= ,48π= 、3、(4分)圆的对称轴有条,半圆形的对称轴有条、4、(2分)画圆时,圆规两脚张开的距离是圆的、5、(2分)圆的周长是直径的倍、6、(4分)一个圆的直径是3分米,它的周长是,面积是、7、(2分)用一条长9.42分米的铁丝围成的圆的面积是、8、(4分)甲圆半径是2厘米,乙圆的半径是5厘米,甲圆周长和乙圆周长的比是,乙圆面积与甲圆面积的比是、9、(2分)在一个周长是28厘米的正方形里画一个最大的圆,圆的面积是、10、(2分)一个半圆的半径是10厘米,它的面积是、二、判断、(对的在横线里画“√”,错的画“×”)(8分)11、(2分)两个半圆一定可以拼成一个圆、、12、(2分)圆的半径扩大3倍,它的面积也扩大3倍、、13、(2分)周长相等的长方形、正方形和圆,面积最大的是正方形、、14、(2分)圆周率表示圆的直径与周长的比率、、三、选一选、(将正确答案的序号填在括号里)(6分)15、(2分)π是()A、有限小数B、循环小数C、无限循环小数D、无限不循环小数16、(2分)周长相等的正方形和圆,它们的面积比是()A、1:1B、157:2C、π:417、(2分)已知圆的半径是r,计算它的周长,正确的算式为()A、πr+r πr+2r πr D、πr+2r四、求下图阴影部分的面积、(单位:厘米)(12分)18、(6分)求图形阴影部分的周长和面积、(单位:cm)19、(6分)求阴影部分的面积(单位:cm)五、动手操作、(7分)20、(7分)画下面图形的对称轴、六、应用题、(30分)21、(7分)一只大钟,它的分针长40厘米、这根分针的尖端转动一周所走的路程是多少厘米?从1时到2时分针扫过的面积是多少平方厘米?22、(7 分)一根电线正好将一个直径是4 分米的圆形绕满50 圈,这根电线长多少米?23、(7 分)一个环形,环宽是2 厘米,外圆直径是1 分米,这个环形的面积是多少?24、(9分)一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图),折叠后的桌面的面积是多少平方米?折叠部分是多少平方米?(得数保留两位小数)七、解决问题、(7分)25、(7分)学校400米的环形跑道,它是由两个直道和两个半圆形跑道组成,每个直道长100米,每条跑道宽为1.25 米,如果在这个跑道上进行400 米赛跑,第一道选手与第四道选手的起跑线要相差多少米?《圆》六年级(上)数学单元测试卷参考答案与试题解析一、填空题、(30分)1、(4分)通过圆心并且两端都在圆上的线段叫做直径、考点:圆的认识与圆周率、分析:圆的直径的定义为:通过圆心并且两端都在圆上的线段叫做直径、解答:解:通过圆心并且两端都在圆上的线段叫做直径、故答案为:圆心、两端、圆上、点评:解答此题要注意圆的直径是线段而不是直线、2、(4分)当π取3.14时,16π= 50.24,48π= 150.72、考点:用字母表示数;含字母式子的求值、专题:用字母表示数、分析:把π=3.14 直接代入16π和48π中,进而计算即可得解、解答:解:当π=3.14 时,16π=16×3.14=50.24;48π=48×3.14=150.72、故答案为:50.24,150.72、点评:此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的结果、3、(4分)圆的对称轴有无数条,半圆形的对称轴有一条、考点:确定轴对称图形的对称轴条数及位置、分析:依据轴对称图形的定义即可作答、解答:解:因为圆是轴对称图形,且它的直径所在的直线就是其对称轴,而圆有无数条直径,所以圆就有无数条对称轴;半圆只有沿从圆心到圆弧中点的连线对折,对折后的两部分才能完全重合,所以半圆形只有一条对称轴、答:圆有无数条对称轴,半圆形有一条对称轴、故答案为:无数、一、点评:此题主要考查如何确定轴对称图形的对称轴条数及位置、4、(2分)画圆时,圆规两脚张开的距离是圆的半径、考点:画圆、专题:平面图形的认识与计算、分析:根据用圆规画圆的方法,把圆规有针的一个脚固定住,另一个脚转一圈即可得到一个圆,固定点的一脚和转一圈的一脚即是圆心到圆上的距离也是半径、解答:解:用圆规画圆,圆规两脚张开的距离即是圆心到圆上的距离也是半径;故答案为:半径、点评:此题主要考查的圆规两脚张开的距离确定半径、5、(2分)圆的周长是直径的π倍、考点:圆、圆环的周长、分析:根据圆的周长公式,求出周长和直径的关系、解答:解:由题意知,C=πd,=π,所圆的周长是直径的π倍;故答案为:π、点评:此题考查了圆的周长和直径的关系、6、(4分)一个圆的直径是3分米,它的周长是9.42分米,面积是7.065平方分米、考点:圆、圆环的周长;圆、圆环的面积、分析:此题根据圆的周长公式c=πd 和面积公式s=π(d÷2)2 计算即可、解答:解:3.14×3=9.42(分米),3.14×(3÷2)2=3.14×2.25=7.065(平方分米),故答案为:9.42 分米,7.065 平方分米、点评:此题主要考查圆的周长和面积公式,代入公式计算即可、7、(2分)用一条长9.42分米的铁丝围成的圆的面积是7.065平方分米、考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:根据题干可知:这个圆的周长是9.42 分米,由此先求出这个圆的半径,再利用圆的面积公式即可解答、解答:解:9.42÷3.14÷2=1.5(分米),3.14×1.52=7.065(平方分米);答:圆的面积是7.065 平方分米、故答案为:7.065 平方分米、点评:此题考查了圆的周长和面积公式的综合应用、8、(4分)甲圆半径是2厘米,乙圆的半径是5厘米,甲圆周长和乙圆周长的比是2:5,乙圆面积与甲圆面积的比是25:4 、考点:圆、圆环的周长;比的意义;圆、圆环的面积、专题:平面图形的认识与计算、分析:根据圆的周长公式C=2πr、圆的面积公式s=πr2,将数据代入公式进行计算,再写出相应的比,化简即可、解答:解:(1)甲圆的周长:乙圆周长=(3.14×2×2):(3.14×2×5)=2:5;(2)乙圆面积:甲圆的面积,=(3.14×52):(3.14×22),=25:4;答:甲、乙两圆周长的比是2:5;面积比是25:4;故答案为:2:5;25:4、点评:此题主要考查的是圆的周长公式和圆的面积公式的应用、9、(2分)在一个周长是28厘米的正方形里画一个最大的圆,圆的面积是38.465平方米、考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:圆是一个正方形内所画的一个最大的圆,所以圆的直径就是正方形的边长,由正方形的周长除以4 即可得到正方形的边长,即圆的直径,再根据圆的面积公式S=πr2,列式求出这个圆的面积、解答:解:圆的半径:28÷4÷2=3.5(米),圆的面积:3.14×3.52=38.465(平方米);答:圆的面积是38.465 平方米、故答案为:38.465 平方米、点评:解答本题的关键是知道在一个正方形内所画最大圆的直径是正方形的边长,再灵活利用圆的周长公式与圆的面积公式解决问题、10、(2分)一个半圆的半径是10厘米,它的面积是157平方厘米、考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:半圆的面积=πr2÷2,由此代入数据即可解答、解答:解:半圆的面积是:3.14×102÷2,=3.14×100÷2,=157(平方厘米);答:它的面积是157 平方厘米、故答案为:157 平方厘米、点评:此题考查了半圆的面积的计算方法、二、判断、(对的在横线里画“√”,错的画“×”)(8分)11、(2分)两个半圆一定可以拼成一个圆、错误、考点:图形的拼组;圆的认识与圆周率、分析:半径相同的两个半圆能拼成一个圆,据此解答、解答:解:因半径相同的两个半圆能拼成一个圆,所以当两个半圆的半径不相等时就不能拼成一个圆、故答案为:错误、点评:本题的关键是两个半圆的半径相等时才能拼成一个圆、12、(2分)圆的半径扩大3倍,它的面积也扩大3倍、错误、考点:圆、圆环的面积、分析:圆的面积=πr2,若半径扩大3 倍,则面积会扩大32 倍,据此即可进行判断、解答:解:因为圆的面积=πr2,若半径扩大3 倍,则面积会扩大32=9 倍,故答案为:错误、点评:此题主要考查圆的面积公式的应用、13、(2分)周长相等的长方形、正方形和圆,面积最大的是正方形、错误、考点:面积及面积的大小比较、专题:平面图形的认识与计算、分析:通过举例验证,再进一步发现结论即可、解答:解:长方形、正方形和圆的周长为12.56 厘米;长方形的长宽可以为3.13 厘米、3.15 厘米,长方形的面积=3.13×3.15=9.8595(平方厘米);正方形的边长为3.14厘米,正方形的面积=3.14×3.14=9.8596(平方厘米);圆的面积=3.14×(12.56÷3.14÷2)2=12.56(平方厘米);从上面可以看出圆的面积最大,由此我们可以得出一般结论:周长相等的长方形、正方形和圆,面积最大的是圆、故答案为:错误、点评:我们可以把周长相等的长方形、正方形和圆,面积最大的是圆当做一个正确的结论记住,快速去做一些选择题或判断题、14、(2分)圆周率表示圆的直径与周长的比率、错误、考点:圆的认识与圆周率、专题:平面图形的认识与计算、分析:圆周率的定义是:任意一个圆的周长与它的直径的比的比值是一个固定的数,人们称它为圆周率,用字母π表示;据此判断即可、解答:解:由圆周率的含义可知:圆周率表示圆的直径与周长的比率,说法错误;故答案为:错误、点评:此题考查了圆周率的定义、三、选一选、(将正确答案的序号填在括号里)(6分)15、(2分)π是()A、有限小数B、循环小数C、无限循环小数D、无限不循环小数考点:圆的认识与圆周率、专题:平面图形的认识与计算、分析:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母“π”表示,它是一个无限不循环小数;进而解答即可、解答:解:根据圆周率的含义可知:圆周率π是一个无限不循环小数;故选:D、点评:此题考查了圆周率的含义、16、(2分)周长相等的正方形和圆,它们的面积比是()A、1:1B、157:2C、π:4考点:比的意义;长方形、正方形的面积;圆、圆环的面积、专题:平面图形的认识与计算、分析:先假设这两种图形的周长是C,再利用这两种图形的面积公式,分别计算出它们的面积,然后求出它们的比即可、解答:解:设这两种图形的周长是C,则圆的半径为:r=C÷2π,面积为:π×()2;正方形的边长为:C÷4,面积为:× = ;所以正方形的面积:圆的面积=(×):[π()2]=π:4;故选:C、点评:此题主要考查正方形、圆形的面积公式及灵活运用,解答此题可以先假设这两种图形的周长是多少,再利用这两种图形的面积公式,分别计算出它们的面积,然后根据题意进行比即可、17、(2分)已知圆的半径是r,计算它的周长,正确的算式为()A、πr+r πr+2r πr D、πr+2r考点:圆、圆环的周长;用字母表示数、专题:平面图形的认识与计算、解分析:圆的周长等于圆的周长的再加上两条半径,据此即可得解、答:×2πr+2r=πr+2r,故选:B、点评:弄清楚圆的周长的组成,是解答本题的关键、四、求下图阴影部分的面积、(单位:厘米)(12分)18、(6分)求图形阴影部分的周长和面积、(单位:cm)考点:组合图形的面积、专题:平面图形的认识与计算、分析:阴影部分的面积就等于长方形的面积减去半圆的面积,又因长方形的长和宽分别等于半圆的直径和半径,于是利用长方形和圆的面积公式即可求解、解答:解:10×(10÷2)﹣3.14×(10÷2)2÷2,=50﹣3.14×25÷2,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75 平方厘米、点评:解答此题的关键是明白:长方形的长和宽分别等于半圆的直径和半径、19、(6分)求阴影部分的面积(单位:cm)考点:长方形、正方形的面积、分析:阴影部分的面积=长方形的面积﹣正方形的面积,长方形的长和宽,正方形的边长已知,从而依据长方形和正方形的面积公式即可求解、解答:解:7×8﹣2×2,=56﹣4,=52(cm2);答:阴影部分的面积是52cm2、点评:此题主要考查长方形和正方形面积的计算方法、五、动手操作、(7分)20、(7分)画下面图形的对称轴、考点:画轴对称图形的对称轴、分析:依据轴对称图形的定义即可作答、解答:解:所作对称轴如下;点评:此题主要考查轴对称图形对称轴的条数、六、应用题、(30分)21、(7分)一只大钟,它的分针长40厘米、这根分针的尖端转动一周所走的路程是多少厘米?从1时到2时分针扫过的面积是多少平方厘米?考点:圆、圆环的周长;圆、圆环的面积、专题:平面图形的认识与计算、分析:(1)根据题干:一只大钟,它的分针长40厘米,可知分针的尖端转动一周所走的路程正好是以分针的长度为半径的圆的周长,利用圆周长的计算公式计算即可;(2)从1 时到2 时分针扫过的面积是半径是40 厘米的圆的面积,根据圆的面积公式解答、解答:解:(1)已知r=40厘米;C=2πr=2×3.14×40=251.2(厘米);答:这根分针的尖端转动一周所走的路程是251.2 厘米;(2)3.14×402=5024(平方厘米),答:从1 时到2 时分针扫过的面积是5024 平方厘米、点评:此题考查圆的周长与面积公式的应用,关键是根据钟面上分针旋转的特点得出旋转后的图形、22、(7分)一根电线正好将一个直径是4分米的圆形绕满50圈,这根电线长多少米?考点:有关圆的应用题、专题:平面图形的认识与计算、分析:根据圆的周长公式:c=πd,把数据代入公式求出圆的周长,然后用周长乘50 即可、解答:解:3.14×4×50,=12.56×50,=628(分米),628 分米=62.8 米;答:这根电线长62.8 米、点评:此题主要考查圆的周长公式的实际应用、23、(7分)一个环形,环宽是2厘米,外圆直径是1分米,这个环形的面积是多少?考点:圆、圆环的面积、专题:平面图形的认识与计算、分析:圆环的面积=π(R2﹣r2),根据题干得出外圆与内圆的半径,代入数据即可解答、解答:解:1分米=10 厘米,10÷2=5(厘米),5﹣2=3(厘米),3.14×(52﹣32),=3.14×(25﹣9),=3.14×16,=50.24(平方厘米);答:这个圆环的面积是50.24 平方厘米、点评:此题考查了圆环的面积公式的应用、24、(9分)一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图),折叠后的桌面的面积是多少平方米?折叠部分是多少平方米?(得数保留两位小数)考点:有关圆的应用题;简单图形的折叠问题、专题:平面图形的认识与计算、分析:(1)求折叠后的桌面的面积,即求圆内最大正方形的面积,作出一条半径,作为三角形的高,然后求出三角形的面积,进而求出正方形的面积;(2)根据圆的面积求出圆的面积,然后减去圆内正方形的面积即可求出折叠部分的面积、解答:解:(1)圆内最大正方形的面积:1.2×0.6÷2×2=0.72(平方米);答:折叠后的桌面的面积是0.72平方米,(2)半径:1.2÷2=0.6 米,圆的面积:3.14×0.6×0.6=1.1304(平方米),折叠部分是:1.1304﹣0.72=0.41.04≈0.41(平方米);答:折叠部分是0.41平方米、点评:此题也可以根据圆内最大正方形和圆的面积比是 3.14:2,求出圆内最大正方形的面积,进而求出折叠部分的面积、七、解决问题、(7分)25、(7分)学校400米的环形跑道,它是由两个直道和两个半圆形跑道组成,每个直道长100米,每条跑道宽为1.25 米,如果在这个跑道上进行400 米赛跑,第一道选手与第四道选手的起跑线要相差多少米?考点:有关圆的应用题、专题:平面图形的认识与计算、分析:先求出相邻的两个跑道相隔的距离,即跑道宽×2π,则第4 跑道起跑线与第1 跑道相差3 个这样的距离;据此解答、解答:解:1.25×2×3.14,=2.5×3.14,=7.85(m),7.85×(4﹣1),=7.85×3,=23.55(m);答;第4 道的起跑线与第1 道相差23.55m、点评:解答此题的关键是明白:内外跑道的差就等于弯道的差、。
单元测试(三)圆(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.已知⊙O的半径是5,直线l是⊙O的切线,则点O到直线l的距离是(C)A.2.5B.3C.5D.102.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于(D)A. 2B. 3C.2 3D.2 23.如图,⊙O是△ABC的外接圆,连接OB,OC,若OB=BC,则∠BAC等于(C)A.60°B.45°C.30°D.20°4.下列说法正确的是(B)A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等5.如图,C,D是以线段AB为直径的⊙O上的两点,若CA=CD,且∠ACD=40°,则∠CAB =(B)A.10°B.20°C.30°D.40°6.如图,当圆形桥孔中的水面宽度AB为8米时,弧ACB恰为半圆.当水面上涨1米时,桥孔中的水面宽度A′B′为(D)A.15米B.4米C.217米D.215米7.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,AB =10,∠P=30°,则AC的长度是(A)A.5 3B.5 2C.5D.5 28.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上的两点,且∠PDC=60°,则∠OBC等于(B)A.55°B.65°C.70°D.75°9.如图,在△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于点E,F,D,则DF的长为(A)A.2B.3C.4D.610.如图,将正六边形ABCDEF放置在平面直角坐标系内,A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2 018次翻转之后,点C的坐标是(B)A .(4 038,0)B .(4 034,0)C .(4 038,3)D .(4 034,3)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =60°.12.如图,在矩形ABCD 中,AB =3,AD =4,若以点A 为圆心,以4为半径作⊙A ,则点A ,点B ,点C ,点D 四点中在⊙A 外的是点C .13.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E =50°.14.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =22,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分的面积为π2-1(结果保留π).15.如图,半圆O 的半径为2,E 是半圆上的一点,将E 点对折到直径AB 上(EE ′⊥AB ),当被折的圆弧与直径AB 至少有一个交点时,则折痕的长度取值范围是三、解答题(本大题共8个小题,满分75分)16.(8分)如图,以正六边形ABCDEF 的边AB 为边,在内部作正方形ABMN ,连接M C.求∠BCM 的大小.解:∵六边形ABCDEF 为正六边形,∴∠ABC =120°,AB =B C. ∵四边形ABMN 为正方形,∴∠ABM =90°,AB =BM . ∴∠MBC =120°-90°=30°,BM =B C. ∴∠BCM =∠BM C.∴∠BCM =12×(180°-30°)=75°.17.(9分)如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AO C.证明:∵AB ︵=AC ︵, ∴AB =A C.∴△ABC 是等腰三角形. ∵∠ACB =60°, ∴△ABC 是等边三角形. ∴AB =BC =A C.∴∠AOB =∠BOC =∠AO C.18.(9分)如图,在平面直角坐标系中,已知点A (1,3)、B (3,3)、C (4,2). (1)请在图中作出经过点A 、B 、C 三点的⊙M ,并写出圆心M 的坐标; (2)若D (1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).19.(9分)如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接E C.若AB =8,CD =2,求EC 的长.解:∵OD ⊥AB ,AB =8,∴AC =BC =12AB =4.设⊙O 的半径为r ,则OC =r -2.在Rt △AOC 中,OA 2=AC 2+OC 2,即r 2=42+(r -2)2,解得r =5.∴AE =2r =10. 连接BE .∵AE 是⊙O 的直径,∴∠ABE =90°.在Rt △ABE 中,∵AE =10,AB =8,∴BE =AE 2-AB 2=102-82=6. 在Rt △BCE 中,∵BE =6,BC =4, ∴CE =BE 2+BC 2=62+42=213.20.(9分)如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线DF 交边AC 于点F . (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)解:(1)证明:连接O D.∵DF 是⊙O 的切线,D 为切点,∴OD ⊥DF .∴∠ODF =90°. ∵BD =CD ,OB =OA ,∴OD 是△ABC 的中位线. ∴OD ∥A C.∴∠CFD =∠ODF =90°. ∴DF ⊥A C.(2)∵∠CDF =30°,∠ODF =90°, ∴∠ODB =180°-∠CDF -∠ODF =60°. ∵OB =OD ,∴△OBD 是等边三角形. ∴∠BOD =60°.∴l BD ︵=60π×5180=53π.21.(10分)如图,AB 是⊙O 的直径,点P 是AB 下方的半圆上不与点A ,B 重合的一个动点,点C 为AP 中点,延长CO 交⊙O 于点D ,连接AD ,过点D 作⊙O 的切线交PB 的廷长线于点E ,连接CE .(1)求证:△DAC ≌△ECP ; (2)填空:①当∠DAP =45°时,四边形DEPC 为正方形;②在点P 运动过程中,若⊙O 的半径为5,∠DCE =30°,则AD证明:∵DE 为切线, ∴OD ⊥DE .∴∠CDE =90°. ∵点C 为AP 的中点,∴DC ⊥AP .∴∠DCA =∠DCP =90°. ∵AB 是⊙O 直径, ∴∠APB =90°.∴四边形DEPC 为矩形.∴DC =EP .在△DAC 和△ECP 中,⎩⎪⎨⎪⎧AC =CP ,∠ACD =∠CPE ,DC =EP ,∴△DAC ≌△ECP (SAS ).22.(10分)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N .劣弧MN ︵的长为65π,直线y =-43x +4与x 轴,y 轴分别交于点A ,B.(1)求证:直线AB 与⊙O 相切;(2)求图中所示的阴影部分的面积.(结果保留π)解:(1)证明:作OD ⊥AB 于D.∵劣弧MN ︵的长为65π,∴90π·OM 180=6π5.解得OM =125.故⊙O 的半径为125.∵直线y =-43x +4与x 轴,y 轴分别交于点A ,B ,当y =0时,x =3;当x =0时,y =4,∴A (3,0),B (0,4).∴OA =3,OB =4.∴AB =32+42=5. ∵S △AOB =12AB ·OD =12OA ·OB ,∴OD =OA·OB AB =125.∴OD 为⊙O 的半径. ∴直线AB 与⊙O 相切.(2)S 阴影=S △AOB -S 扇形OMN =12×3×4-90π×(125)2360=6-3625π.23.(11分)问题背景:如图1,在四边形ACBD 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B ,C 分别落在点A ,E 处(如图2),易证点C ,A ,E 在同一条直线上,且△CDE 是等腰三角形,所以CE =2CD ,从而得出结论:AC +BC =2C D. 简单应用:(1)在图1中,若AC =2,BC =22,则CD =3;(2)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长;(3)如图4,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长.(用含m ,n 的代数式表示)图1 图2 图3 图4解:(2)连接AC ,BD ,AD ,∵AB 是⊙O 直径, ∴∠ADB =∠ACB =90°. ∴AC =AB 2-BC 2=5. ∵AD ︵=BD ︵, ∴AD =B D.将△BCD 绕点D 顺时针旋转90°到△AED , ∴∠EAD =∠DB C. ∵∠DBC +∠DAC =180°, ∴∠EAD +∠DAC =180°. ∴E ,A ,C 三点共线. ∵BC =AE ,∴CE =AE +AC =BC +AC =17. ∵∠EDA =∠CDB ,∴∠EDA +∠ADC =∠CDB +∠ADC , 即∠EDC =∠ADB =90°.∵CD =ED ,∴△EDC 是等腰直角三角形. ∴CE =2C D. ∴CD =1722.(3)以AB 为直径作⊙O ,连接DO 并延长交⊙O 于点D 1,连接D 1A ,D 1B ,D 1C. 由(2)可知:AC +BC =2D 1C , ∴D 1C =2(m +n )2. 又∵D 1D 是⊙O 的直径, ∴∠DCD 1=90°. ∵AC =m ,BC =n ,∴由勾股定理可求得:AB 2=m 2+n 2. ∴D 1D 2=AB 2=m 2+n 2. ∵D 1C 2+CD 2=D 1D 2,∴CD 2=m 2+n 2-(m +n )22=(m -n )22.∵m<n,∴CD=2(n-m)2.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(每小题只有一个正确选项,把正确选项的代号填在题后的括号内,本大题共8小题,每小题3分,共24分)1.有4个命题:①直径相等的两圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧,其中真命题是【 】A .①③ B .①③④ C .①④ D .①2.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 【 】 A .3 B .5 C .15 D .173.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于 【 】 A .116° B .32° C .58° D .64°4.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 【 】 A .相离 B .相切 C .相交 D .无法判断5.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是 【 】A .80°B .160°C .100°D .80°或100°6.△ABC 中,内切圆I 和边BC 、CA 、AB 分别切于点D 、E 、F ,则∠FDE 与∠A 的关系是A .∠FDE 与21∠A 相等 B .∠FDE 与21∠A 互补 【 】 C .∠FDE 与21∠A 互余 D .无法确定7.如图,圆O 与正方形ABCD 的两边AB 、AD 分别相切于点M 、N ,且DE 与圆O 相切于 E 点.若圆O 的半径为5,且AB =11,则DE 的长度是 【 】 A .5B .6C .D .(第2题)8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 【 】 A . B . C .D . 32二、填空题(本大题共6小题,每小题3分,共18分)9.如图,AB 是半圆的直径,点D 是AC 的中点,∠ABC =50°,则∠DAB = .10.如图,△ABC 放置在平面直角坐标系中,其中A (3,0),B (2,1),C (2,-3),则这个三角形的外心坐标是__ __.11.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(﹣3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 . 12.正六边形的外接圆与内切圆的半径之比为 .13.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的 格点上,将△ABC 绕点B 逆时针旋转到△A ′BC ′的位置,且点A ′、C ′仍落在格点上,则图中阴影部分的面积是 .(结果保留π)14.平面内有四个点A 、O 、B 、C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足 题意的OC 长度为整数的值可以是 .三、(本大题共2小题,每小题6分,共12分)15. 如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC =BD .求证:OC =OD .(第15题)(第9题)(第10题)(第8题)(第7题)(第13题)16.如图,△ABC 内接于⊙O ,BD 为⊙O 的直径,∠BAC =120°,AB =AC , AD =6,求DC 的长.四、(本大题共2小题,每小题7分,共14分)17.如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD . (1) 求证:BD CD =;(2) 小明说:“B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.” 你认为小明的说法正确吗?请说明理由.18.如图,⊙O 的直径AB =10,C 、D 是圆上的两点,且.设过点D 的切线ED 交AC的延长线于点F .连接OC 交AD 于点G . (1)求证:DF ⊥AF . (2)求OG 的长.五、(本大题共2小题,每小题8分,共16分) 19.如图,ABC △是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=.(1)当35α=时,求β的度数;(2)猜想α与β之间的关系,并给予证明.20.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD , 且∠CDB =∠OBD =30°,DB =cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)CBAO(第19题)(第16题)ABCEFD(第17题)(第18题)(第20题)六、填空题(本大题共2小题,每小题8分,共16分)21.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.(第21题)22.如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD 上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.(第22题)参考答案一、1.A 2.B 3.B 4.C 5.D 6.C 7.B 8.A二、9. 650; 10. (-2,-1); 11. 1或5 ; 12.23: ; 13.1334-π ; 14.2或3或4 三、15.证明:方法一.如图,连结OA ,OB ,∵∠OCD =∠ODC∴∠OCA =∠ODB 又∵OA =OB ∴∠OAC =∠OBD∴△AOC ≌△BOD (SAS ) ∴AC =BD方法二.如图,过O 作OE ⊥AB 于点E ,∵OE ⊥AB ∴EA =EB∵∠OCD =∠ODC ∴OC =OD∴CE =DE ∴AC =BD 16.解:∵BD 为⊙O 的直径,∴∠BAD =∠BCD =90°,∵∠BAC =120°,∴∠CAD =120°﹣90°=30°, ∴∠CBD =∠CAD =30°, 又∵∠BAC =120°,∴∠BDC =180°﹣∠BAC =180°﹣120°=60°, ∵AB =AC ,∴∠ADB =∠ADC ,∴∠ADB =∠BDC =×60°=30°,∵AD =6,∴在Rt △ABD 中,BD =AD ÷cos60°=6÷=4,在Rt △BCD 中,DC =BD =×4=2.四、17.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =.(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 18.解:(1)连接OD ,∵,OBAC DOBAC DE∴∠CAD =∠DAO =∠ODA =30°,∠ABD =60°, ∵ED 是⊙O 的切线∴∠ODF =90°∴∠ADF =60°,∴∠CAD +∠ADF =90°, ∴∠AFD =90°∴DF ⊥AF .(2)连结BD ,在Rt △ABD 中,∠BAD =30°,AB =10, ∴BD =5, ∵=,∴OG 垂直平分AD ,∴OG 是△ABD 的中位线, ∴OG =BD =.五、19.(1)解:连接OB ,则OA OB =,35OBA OAB ∴∠=∠=.180110AOB OAB OBA ∴∠=-∠-∠=. 1552C AOB β∴=∠=∠=.(2)答:α与β之间的关系是90αβ+=. 连接OB ,则OAOB =.OBA OAB α∴∠=∠=.1802AOB α∴∠=-.11(1802)9022C AOB βαα∴=∠=∠=-=-.90αβ+=.20.(1)证明:连结OC ,OD ,根据圆周角定理得:∠COB =2∠CDB =2×30°=60°, ∵AC ∥BD ,∴∠A =∠OBD =30°,∴∠OCA =180°﹣30°﹣60°=90°,即OC ⊥AC , ∵OC 为半径,∴AC 是⊙O 的切线;(2)解:∵AC 为⊙O 的切线,∴OC ⊥AC . ∵AC ∥BD , ∴OC ⊥BD .由垂径定理可知,MD =MB =BD =.在Rt △OBM 中,∠COB =60°,OB ===6.在△CDM 与△OBM 中,第20题∴△CDM ≌△OBM ∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC ==6πcm 2.六、21.解:(1)证明:在△AEB 和△DEC 中,∴△AEB ≌△DEC (ASA ),∴EB=EC ,又∵BC=CE ,∴BE=CE=BC ,∴△EBC 为等边三角形,∴∠ACB =60°; (2)解:∵OF ⊥AC ,∴AF=CF ,∵△EBC 为等边三角形,∴∠GEF =60°, ∴∠EGF =30°, ∵EG =2,∴EF =1,又∵AE=ED =3,∴CF=AF =4, ∴AC =8,EC =5,∴BC =5,作BM ⊥AC 于点M ,∵∠BCM =60°, ∴∠MBC =30°, ∴CM =52,BM =22532BC CM -=,∴AM =AC ﹣CM =112, ∴AB =227AM BM +=.(1)根据题意,当AP =DQ 时,四边形APQD 为矩形.此时,4t =20﹣t ,解得t =4(s ).答:t 为4时,四边形APQD 为矩形; (2)当PQ =4时,⊙P 与⊙Q 外切.①如果点P 在AB 上运动.只有当四边形APQD 为矩形时,⊙P 与⊙Q 外切. PQ=4.由(1),得t =4(s );②如果点P 在BC 上运动.此时t ≥5,则CQ ≥5,PQ ≥CQ ≥5>4, ∴⊙P 与⊙Q 外离;③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ =t ,CP =4t ﹣24.当CQ ﹣CP =4时,⊙P 与⊙Q 外切.此时,t ﹣(4t ﹣24)=4,解得;④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP ﹣CQ =4时,⊙P 与⊙Q 外切. 此时,4t ﹣24﹣t =4,解得,∵点P 从A 开始沿折线A ﹣B ﹣C ﹣D 移动到D 需要11s , 点Q 从C 开始沿CD 边移动到D 需要20s ,而,∴当t为4s,,时,⊙P与⊙Q外切.22.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°.即PN与⊙O相切.(2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∴∠OMA+∠OAM=90°,∴∠PNM+∠ONA=90°.∴∠PNO=180°﹣90°=90°.即PN与⊙O相切.(3)解:连接ON,由(2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∵∠PON=60°,∠AON=30°.作NE⊥OD,垂足为点E,则NE=ON•sin60°=1×=.S阴影=S△AOC+S扇形AON﹣S△CON=OC•OA+CO•NE =×1×1+π﹣×1×=+π﹣.。
第24章 圆单元测试(二)一、选择题(3分*12=36分)1、下列关于三角形的外心的说法中,正确的是( )。
A 、三角形的外心在三角形外B 、三角形的外心到三边的距离相等C 、三角形的外心到三个顶点的距离相等D 、等腰三角形的外心在三角形内 解析:本题考查三角形外心的意义:(1)三角形的外心是三角形三边垂直平分线的交点;(2)三角形的外心到三角形三个顶点的距离相等。
故答案选C 。
2、如果两圆半径分别为3和5,圆心距为6,那么这两圆的位置关系是( )。
A .内切B .相交C .外离D .外切 解析:本题考查圆与圆的位置关系。
因为5-3<6<5+3 故答案选B 。
3、如图,A 、B 、C 、是⊙O 上的三点,∠ACB=45°,则∠AOB 的大小是( )。
A .90°B .60°C .45°D .22.5°解析:本题考查“同弧所对的圆周角等于它所对的圆心角的一半”,∠AOB=2∠ACB=90° 故答案选A 。
4、如图,底面半径为1,母线长为4的圆锥,•一只小蚂蚁若从A 点出发,绕侧面一周又回到A 点,它爬行的最短路线长是( ) A .2π B .42 C .43 D .5第3题 第4题 第5题 第6题 解析:本题考查“圆锥的侧面展开图”以及“蚂蚁爬行路程最短问题”把圆锥沿母线PA 剪开得如图所示的侧面展开图,则由“两点之间线段最短”可知线段AA ’即为蚂蚁爬行最短路程。
规律:此种题型通常要求出侧面展开图这个扇形的圆心角的度数。
求这个圆心角的度数利用扇形的弧长等于底面圆周长来求。
由题意得,1802l n r ππ=,∴︒=︒⨯=︒⨯=9036041360l r n ∴△PAA ’是等腰直角三角形∴AA ’=242=PA故答案选B 。
规律:牢记这个求圆锥侧面展开图的扇形圆心角的度数公式: ︒⨯=360lrn (注意:本公式只能在选择、填空题直接使用) 5、如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB,∠AOC=78°,则∠E 等于( )A .39°B .28°C .26°D .21°解析:本题考查“连半径,得等腰三角形”的常用辅助线作法。
连结OD ,则由题意可得△OCD 和△ODB ,利用“等腰三角形两底角相等”和“三角形的外角等于和它不相邻的两个内角的和”可得∠OCD=∠ODC=2∠E,∴∠AOC=3∠E=78°,∴∠E=26° 故答案选C 。
6、如图,AB 是半圆的直径,AB =2r ,C 、D 为半圆的三等分点,则图中阴影部分的面积是( )。
A 、121πr 2 B 、61πr 2 C 、41πr 2 D 、241πr2解析:本题考查“求阴影部分的面积”的常用作法。
连结OD ,OC ,∵C 、D为半圆的三等分点,∴弧AC=弧BD ,∴∠DAB=∠ADC,∴CD//ABA ’∴,∴226136060r πr S S 扇形OCD π===阴影 故答案选B 。
7、已知圆锥侧面展开图的圆心角为90°,•则该圆锥的底面半径与母线长的比为( ) A .1:2B .2:1C .1:4D .4:1解析:本题考查求圆锥侧面展开图的扇形圆心角的度数公式: ︒⨯=360lrn (注意:本公式只能在选择、填空题直接使用) 故答案选C 。
8、一条弦把圆分成1 : 5两部分,那么这条弦所对的圆心角的度数为( ) A .60º B .30º C .60º或120º D .30º或150º 解析:本题是易错题:把求“圆心角”习惯性的当做求“圆周角”∵一条弦把圆分成1 : 5两部分,∴这条弦所对的劣弧、优弧的度数分别为60°,120° ∴这条弦所对的圆心角的度数即为这条弦所对的劣弧的度数60° 故答案选A 。
9、如图,弦AB 和CD 相交于点P ,︒=∠30B ,︒=∠80APC ,则BAD ∠的度数为( ) A .20° B .50° C .70° D .110°P DCBA第9题 第10题 D 第12题解析:本题考查“在同圆或等圆中,同弧所对的圆周角相等”,∴∠D =︒=∠30B ,∵︒=∠80APC ∴ BAD ∠=︒=︒-︒=∠-∠503080D APC 故答案选B 。
10、如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D . 若∠D =40°,则∠A 的度数为( ) A .20° B .25° C .30° D .40°解析:本题重点考查“切线的性质——圆的切线垂直于过切点的半径” 连结OC 得,OC ⊥CD ,则∠COD=90°-∠D =50° 又∵∠COD=∠A+∠OC A ,∠A=∠OC A ∴∠A=25° 故答案选B 。
11、正六边形的半径与边心距之比为( ) A 、3:1 B 、2:3 C 、3:2 D 、1:3解析:本题重点考查正六边形的基本图形,如右图,中心角∠AOB=60°,由等腰三角形的“三线合一”可知∠1=30°,∴Rt △OAC 中,OA:OC=3:2。
故答案选C 。
12、如图,两圆相交于A 、B 两点,小圆经过大圆的圆心O ,C ,D 分别在两圆上,若∠ADB=100°,则∠ACB=( ) A .35° B .40° C .50° D .80° 解析:本题考查“圆内接四边形的对角互补”以及“同弧所对的圆周角等于它所对的圆心角的一半”,辅助线的作法是识图能力的训练与培养。
连结OA 、OB,则四边形OADB 是小圆的内接四边形,∴∠AOB=180°—∠ADB=80°,∴在⊙O 中,∠ACB=21∠AOB=40° 故答案选B 。
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(3分*10=30分)1、已知圆锥母线长为4cm ,底面半径为2cm ,则圆锥的侧面积等于_______ 解析:本题考查“圆锥的侧面积公式——S=πrl ”,答案:8πcm 22、半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为 解析:本题考查“垂径定理”,答案:63、在直径为10m 的圆柱形油槽内装入一些油后,如果油面宽为8m ,那么油的深度是_________ 解析:本题考查“垂径定理”,同时要注意两种情况的讨论,答案:2m 或8m4、已知方程0652=+-x x 的两根分别是两圆的半径,且这两圆相离,则圆心距d 的取值范围是_______ 解析:本题考查“一元二次方程的解法”以及“圆与圆的位置关系”, 同时注意:相离的理解——内含或外离解方程0652=+-x x 得23230,3,221+>-<≤∴==d d x x 或 答案:510><≤d d 或5、若 ⊙O 的半径为5,⊙O 内一点P 与圆心的距离为4,则过点P 的整数弦有_____条。
解析:本题考查“圆内过一点最短的弦与最长的弦”的认知:圆内过一点最长的弦是直径,最短的弦是与这条直径垂直的弦,并且有且只有一条,同时要注意过这点的其它的等于某个整数的弦由圆的对称性各有两条。
如图,设过点P 的弦长为x ,则最长的弦长为10,由垂径定理及勾股 定理可求得最短的弦长为6,∴106≤≤x ,10,9,8,7,6=∴x ,等于6和10的各只有一条,等于7, 8,9的各有两条,所以过点P的整数弦共有8条。
答案:86、两同心圆中,大圆的弦AB 切小圆于C 点,且AB=4cm,则夹在两圆间的圆环面积是________解析:本题考查“圆环的面积公式——)(2222r R r R S -=-=πππ”。
由垂径定理及勾股定理可求得答案:4πcm 27、若直角三角形的两直角边长分别为5cm ,12cm ,则其内切圆半径为______ 解析:本题考查“直角三角形的内切圆半径公式——2cb a r -+=”。
答案:2cm8、用半径为20厘米,圆心角为108º的扇形纸片围成一个圆锥,则该圆锥 的底面半径是 。
解析:本题考查“扇形的弧长公式——180rn l π=”及“圆锥侧面展开图扇形的弧长等于底面圆的周长”。
由题意得,cm r r 6,180201082=⨯=解得ππ答案:6cm9、如图,PA 、PB 是⊙O 的两条切线,A 、B 是切点,AC 是⊙O 的直径, 35BAC ∠=,则P ∠的度数为_____解析:本题考查“切线长定理”及“等腰三角形的性质” 答案:70°10、如图,在条件:①60COA AOD ∠=∠=;②AC=AD=OA;③点E 分别是AO 、CD 的中点;④OA CD ⊥,且60ACO ∠=中,能推出四边形OCAD 是菱形的条件有_______个.答案:4三、解答题1、如图所示,在Rt △ABC 中,∠A=90°,AB=5,AD=12,以A 为圆心,AB 为半径的⊙A 交BD 于C ,求BC 长.(8分)分析:要求弦长,通常利用垂径定理,构造直角三角形,再利用勾股定理 来解决;也可在直角三角形中利用三角函数来解决。
1350213255)13(125)13(122,13,,131259021,222222222222==∴=-=--∴-=-=∆--=-=∆=-====+=∴==︒=∠==⊥x BC x x x x DE AB AE AEB Rt x DE AD AE AED Rt x BC x DE x CE x BE AD AB BD ,AD ,AB A BC CE BE E BC AE A 解得中,中,则设则于作解法一:过点2222 1350213251355sin sin 135sin sin 90,90,90135sin 13125902,22==∴=⨯=∠⋅=∴=∠∆=∠=∠∴∠=∠∴︒=∠+∠∆∴⊥︒=∠+∠∴︒=∠==∠∴=+=∴==︒=∠=⊥BE BC EAB AB BE ABBEEAB AEB Rt D EAB D EAB EAB B AEB Rt BC AE B D BAD DB AB D AD AB BD ,AD ,AB A BEBC E BC AE A 中,中则于作解法二:过点2、如图,一条公路的转弯处是一段圆弧(图中的弧AB ),点O 是这段弧的圆心。
AB=300m ,C 是弧AB 上的一点,OC ⊥AB 于D ,CD=45m ,求这段弯路的半径.(8分) 分析:要求半径,通常利用垂径定理,构造直角三角形,再利用勾股定理来解决。