初中数学 分式的基本性质(1)
- 格式:ppt
- 大小:841.00 KB
- 文档页数:17
分式的基本性质
1.分式的基本性质
(1)分式的基本性质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
(2)分式中的符号法则:
分子、分母、分式本身同时改变两处的符号,分式的值不变.
【方法技巧】利用分式的基本性质可解决的问题
1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
1 / 1。
八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。
八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
初二3.1分式的基本性质一课题 3.1分式的基本性质一课标分析 1. 对于分式的概念,《义务教育数学课程标准(2011年版)》的要求是“了解”,了解分式的概念.教学时,教师可从具体的实例出发,引导学生用分式表示问题的结果,体会分式与实际生活的紧密联系.2. 对于分式有意义的条件,《义务教育数学课程标准(2011年版)》的要求.会求分式意义时字母的取值范围.教学时,要让学生体会是分母不为零而不是分母中的字母不为零.学好本节课,是今后继续学习分式的性质、运算及解分式方程的前提,其中对分式有无意义的讨论为以后学习反比例函数作了铺垫.因此应让学生掌握.3.《义务教育数学课程标准(2011年版)》要求类比分数的基本性质,了解分式的基本性质.分数与分式是具体与抽象、特殊与一般的关系.由于分式和分数具有类似的形式,因此也具有类似的性质和运算.在本节分式的基本性质、约分、通分、最简分式的概念都应从学生已有的分数的基本性质、约分、通分、最简分数类比引入,再去猜想、验证、归纳出新知识.4.《义务教育数学课程标准(2011年版)》要求能利用分式的基本性质,进行约分和通分,了解最简分式的概念.分式的约分和通分,是进行分式的四则运算所必须掌握的分式变形.在学习分式的基本性质时,就应训练学生灵活运用分式的基本性质,进行分式化简、变形,为分式的约分、通分作好铺垫.在约分和通分的教学中,通过举例说明让学生了解分式的约分与通分,以及最简分式的概念,了解约分、通分的方法,能判别一个分式是否为最简分式.课堂上要注意抓住约分的关键——找出公因式,通分的关键——确定公分母进行教学,使学生更好地掌握分式的约分和通分.学情分析学生已学过分数知识,头脑中已经形成了分数的相关知识,知道分数的分母、分子都是具体的数,因此学生会用学生会用学习分数的思维定势去认知、理解分式。
但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化。