在线装置-容性设备原理
- 格式:ppt
- 大小:201.50 KB
- 文档页数:15
感性及容性无功配置的研究摘要:本文主要围绕国家电网公司建设“资源节约型、环境友好型、工业化”输变电工程为目标,根据国家电网公司通用设计变电站建设规模及接入系统方案,通过详细的无功平衡计算,并参照国网公司通用设计与通用设备,对本工程感性无功及容性无功补偿装置进行优化配置,以满足电压和功率因数运行要求,减少无功的不合理流动,提高电力系统运行的经济性。
关键词:感性无功,容性无功,无功配置1、无功功率补偿的作用电力系统网络中不仅大多数负荷要消耗无功功率,而且大多数网络组件也要消耗无功功率。
电力系统中网络组件和负荷需要的无功功率必须从网络中某个地方获得。
如果这些所需要的无功功率由发电机提供并经过长距离传送,显然是不合理的,通常也是不可能的;如果这些所需要的无功功率不能及时得到补偿,电力系统的安全运行以及用电设备安全就会受到影响。
因此,无功功率补偿对电力系统有着重要意义,包括以下几点:(1)稳定受电端及电网的电压,提高供电质量。
(2)提高供用电系统及负载的功率因数,降低设备容量,减小功率损耗。
(3)改善系统的稳定性,提高输电能力,并提供一定的系统阻尼。
(4)减少线路损失,提高电网的有功传输能力。
(5)降低电网的功率损耗,提高变压器的输出功率及运行经济效益。
2、并联电容器补偿无功功率的原理电力系统的大部分负荷是电感性的,这些感性负荷消耗大量的无功功率,感应电动机消耗的无功功率约占总功率的60%~70%,变压器消耗的无功功率约占其总功率的20%~25%,而空载运行时,变压器的功率因数只有0.01左右,如果感性负荷所需的无功功率得不到就地补偿,势必由发电机来供给,即电气设备与电源之间存在大量的功率交换。
大量的无功电流在电源与负荷之间流动,造成电网电能的消耗,降低电源的功率因数。
在交流电路中,纯电阻原件中负载电流和电压同相位,纯电感负载中电流滞后电压900 ,纯电容负载中电流超前电压900 。
也就是说,纯电容中的电流与纯电感中的电流相位相差1800 ,可以相互抵消,即当电源向外供电时,感性负荷向外释放的能量由容性负荷储存起来;当感性负荷需要能量时,再由容性负荷向外释放的能量来提供。
电容补偿柜原理介绍以及特点(附加原理图)来源:电⼯维修学习1、电⼒电容器的补偿原理电容器在原理上相当于产⽣容性⽆功电流的发电机。
其⽆功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同⼀电容器上,能量在两种负荷间相互转换。
这样,电⽹中的变压器和输电线路的负荷降低,从⽽输出有功能⼒增加。
在输出⼀定有功功率的情况下,供电系统的损耗降低。
⽐较起来电容器是减轻变压器、供电系统和⼯业配电负荷的简便、经济的⽅法。
因此,电容器作为电⼒系统的⽆功补偿势在必⾏。
当前,采⽤并联电容器作为⽆功补偿装置已经⾮常普遍。
2、电⼒电容器补偿的特点2.1、优点电⼒电容器⽆功补偿装置具有安装⽅便,安装地点增减⽅便;有功损耗⼩(仅为额定容量的0.4 %左右);建设周期短;投资⼩;⽆旋转部件,运⾏维护简便;个别电容器组损坏,不影响整个电容器组运⾏等优点。
2.2、缺点电⼒电容器⽆功补偿装置的缺点有:只能进⾏有级调节,不能进⾏平滑调节;通风不良,⼀旦电容器运⾏温度⾼于70 ℃时,易发⽣膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;⽆功补偿精度低,易影响补偿效果;补偿电容器的运⾏管理困难及电容器安全运⾏的问题未受到重视等。
以上是对电容柜的特点和知识简介下⾯是详细解说关于电容补偿柜的⼀些知识低压电容补偿柜也叫低压⽆功补偿装置MSCGD,⼯作原理是根据电⽹向⽤电设备提供的负载电流由有功电流和⽆功电流两部分组成,⽆功电流在电源和负载之间往复交换,⼤⼤占⽤电⽹,使供电设备的供电能⼒⼤⼤降低,使功率因数降低。
就是⽤装置产⽣的容性⽆功电流快速、准确地跟踪抵消电⽹中的感性⽆功电流,从⽽提⾼功率因数,保证⽤电质量,提⾼供电设备的供电能⼒,并减⼩电路中的损耗。
⼀般来说,低压电容补偿柜由柜壳、母线、断路器、隔离开关,热继电器、接触器、避雷器、电容器、电抗器、⼀、⼆次导线、端⼦排、功率因数⾃动补偿控制装置、盘⾯仪表等组成。
电容器柜功能及其结构电容器补偿柜的作⽤电容补偿柜的作⽤是提⾼负载功率因数,降低⽆功功率,提⾼供电设备的效率;电容柜是否正常⼯作可通过功率因数表的读数判断,功率因数表读数如果在0.9左右可视为⼯作正常。
SPM-2型变电设备在线监测诊断系统福建和盛高科技产业有限公司Fujian Hoshing Hi-Tech Industrial Co.,Ltd.目录1、系统概述 (3)1.1系统功能 (3)1.1.1主变油色谱 (3)1.1.2容性高压设备监测单元 (3)1.1.3 金属氧化锌避雷器监测单元 (4)1.1.4 变压器铁芯电流监测单元 (4)1.1.5 系统电压监测单元 (4)1.1.6 环境监测单元 (4)2 在线监测系统的使用 (4)4.2.1系统软件结构 (4)4.2.2操作说明 (5)4.2.2.1系统启动 (5)4.2.2.2系统主界面 (6)4.2.2.3变压器设备 (8)4.2.2.4容性设备 (12)4.2.2.5避雷器、铁芯、环境 (14)3 在线监测系统原理 (14)3.1油色谱在线监测的原理 (14)系统组成与原理 (14)4.3.1 SPM-Z型在线监测装置说明 (16)3.2容性设备在线监测的原理 (16)1、系统概述 (16)2、中央监控器C U的基本结构 (17)3、本地测量单元L U (18)3.1测量单元的基本结构 (18)3.1.1 相位测量单元 (18)3.2.2 非相位测量单元 (19)3.2信号线的连接 (20)4.6产气速率及三相不平衡计算模块 (22)4.7数据标定 (22)4.7.1 功能综述 (22)4.7.2 操作 (22)4.7.2.1 自动在线标定 (22)6、测量典型案例 (26)6.1在母联开关合上的情况下 (26)6.2在母联开关断开的情况下 (26)6.3容性设备热备用,且对地仍有电压,三相同时波动 (27)6.4C T投到对侧变电站时,三相同时波动 (27)6.5环境湿度对M O A的阻性电流的影响 (27)6.6介质损耗测量误差分析 (29)1、系统概述1.1系统功能SPM-2C型变电设备在线监测与故障诊断系统,可实现对变电站电气设备状态的在线监测,进行数据采集、实时显示、诊断分析、故障报警、参数设置等,同时可以实现电网变电站电气设备在线监测的系统化和智能化,使各级领导、专业人员能够实时直观地了解和掌握电气设备的运行情况,能够对有异常状况的电气设备及时采取措施,避免事故的发生;系统可以延长预防性试验的周期,甚至于代替预防性试验,并可对开展设备的状态检修提供技术支持。
电力电容器的原理及实际应用————————————————————————————————作者:————————————————————————————————日期:电容器与无功补偿一、电容器的原理1.概念顾名思义,电容器是“装电的容器”,是一种容纳电荷的器件,英文名称:capacitor。
电容器通常简称为电容,用字母C标示。
2.单位电容器所带的电荷量Q与电容器两极板间的电势差U的比值,叫做电容器的电容,用C表示。
式中,电荷量Q是用于度量电荷多少的物理量,简称电量,单位为库仑,简称库,符号为C。
库仑的定义是,若导线中载有1安培的稳恒电流,则在1秒内通过导线横截面积的电量为1库仑。
电压U的单位为伏特,简称伏,符号为V。
电容器的单位在数值上等于两极板间的电势差为1V时电容器需带的电荷量。
电容的物理意义是,表征电容器容纳(储存)电荷本领的物理量。
在国际单位制中电容的单位是法拉(F),这是一个非常大的物理量,我们在电力系统中常用的低压并联电容器,电容一般不到一法拉的千分之一。
所以,常用单位还有微法(μF)和皮法(pF)。
1F=106μF=1012pF。
对于一个确定的电容器而言,电容是不变的,C与Q、U无关。
3.构造任何两个彼此绝缘又相互靠近的导体都可以构成电容器。
在两个相距很近的平行金属板中间夹上一层绝缘介质,就组成一个最简单的电容器,叫做平行板电容器。
(见图1)4.电容器的大小平行板电容器的电容C跟介电常数ε成正比,跟正对面积S正比,跟极板间的距离d成反比:图1 平行板电容式中,k为静电力常量,其值为9.0×109Nm2/C2。
静电力常量表示真空中两个电荷量均为1C的点电荷,它们相距1m时,它们之间作用力的大小为9.0×109N。
εr为两平行板之间的绝缘介质的相对介电常数,其值为绝缘介质的介电常数和真空介电常数的比值。
S为两平行板相对部分的面积,单位为m2,d为两平行板之间的距离,单位为m。
变压器在线监测装置我厂2×1000MW机组2组主变(2x3台单相变)及2台三相一体式起备变变压器配置美国Serveron公司生产的变压器在线监测装置的描述。
在该系统装置中,对变压器油中故障气体(TM8)、微水(TMM)、高压套管(TMB)进行在线监测及后台控制,并通过接口与DCS 连接。
1、TM8/TMM变压器在线监测装置工作原理TM8/TMM变压器在线监测装置是通过油中溶解气体分析(Dissolved Gases Analysis,简称DGA)来对油浸电力设备进行监测。
因能够及时发现变压器内部存在的早期故障,在以往的运行维护中消除了不少事故隐患。
其工作原理是:TM8/TMM通过一台泵来实现变压器油以大约250ml/m的流量在变压器和在线监测仪的萃取系统间循环。
萃取过程不消耗变压器油。
油气分离装置气体侧有一个气密的空间,与油侧的油中气体达到自然平衡。
经过一个典型的4小时采样间隔,大约有60升油穿过了萃取系统,萃取系统中显示的气压反映了变压器中溶解气体的全部气压。
在获得气样后用载气通过色谱柱后,通过TCD获得气体的具体含量。
在色谱柱热区,通过加热的方式使其温度一直保持在73 C。
这样能够使测量准确稳定。
TM8/TMM带有自校验系统,能够自动或人为进行校验。
TM8/TMM共测量8种故障气体及微水,包括氢气,甲烷,乙炔,乙烯,乙烷,一氧化碳,二氧化碳和氧气。
TM8也能对氮气及总烃报数,是唯一全面符合中国标准的DGA。
2、TMB容性设备绝缘在线监测系统工作原理TMB容性设备绝缘在线监测系统,对电流互感器(CT)、套管(Bushing)、耦合电容器(OY)以及电压互感器(PY)、CVT等进行在线监测,能够发现套管存在的绝缘问题。
本系统利用高灵敏度电流传感器,不失真的采集电力设备末屏对地的电流信号,同时从相应的PT取得电压信号,通过对数字信号的运算和处理,得出介质损耗和电容量等信息。
最终利用专家系统,全方位的分析、判定、预测电气设备绝缘系统的运行状况。
容性设备在线监测关键技术研究摘要:本文从信号获取和信号处理两方面着手,研究了提高容性设备在线监测精度和可靠性的两种关键技术。
设计了一种小电流有效的高精度电流传感器以减小获取信号误差,此外还设计了一种传感器多层屏蔽结构,能有效屏蔽电磁场干扰,能在较强的电磁干扰环境中提取出被测电流信号。
最后利用“混合基”FFT算法提高信号处理精度。
关键词:容性设备;电流传感器;混合基FFT。
0 引言电力系统中有大量的容性设备,如电流互感器、电压互感器、高压套管等,它们的绝缘性能将直接额影响电网的安全、稳定运行。
在线监测技术能够及时发现事故隐患,是提高供电可靠性的主要技术手段之一[1]。
介质损耗角正切值(tanδ)和等值电容是反映设备绝缘性能的重要参数,目前比较常用的检测tanδ的方法是采用传感器分别高压设备的交流泄漏电流信号和比较稳定的标准电压信号,然后通过比较计算这两个信号的相位关系从而得到tanδ。
但是目前高压设备的泄漏电流数量级一般都在几μA到几十μA,而目前市场上用来获取电流信号的小电流传感器准确度通常为几十μA,其精确度已经不能满足在线监测的要求。
所以本文基于单芯穿电流互感器的工作原理开发了一套分辨率小于1μA的小电流传感器系统,由于测试现场电磁干扰较强,又设计了一种传感器多层屏蔽结构,能有效屏蔽电磁场干扰,使电流传感器系统能在较强的电磁干扰环境中提取出被测电流信号。
针对外界噪声和环境因素对电气量采样的干扰,本文运用FFT算法从电网谐波干扰中提取被测工频信号,结合工频信号的频率特征,在tan δ在线监测的数据分析中采用“混合基”FFT算法,可以避免数据处理时出现频谱泄漏现象。
1小电流传感器系统研制根据传感器应用在XLPE电缆的特殊要求,传感器设计的目标为:可测量电流下限小于1μA,电流分辨率小于1μA,线性度在0.99以上;在传感器测量范围内,角误差满足小于1‰rad。
为了尽量减小信号传输过程中干扰因素对微弱信号的影响,传感器采用有源形式,即在耦合到泄漏电流后直接调理到适当幅值的大信号,然后进行传输。