微分方程的数值解法matlab(四阶龙格—库塔法).
- 格式:ppt
- 大小:380.00 KB
- 文档页数:36
matlab四阶龙格库塔法解方程组摘要:1.MATLAB 与四阶龙格- 库塔法简介2.四阶龙格- 库塔法求解方程组的原理3.MATLAB 中实现四阶龙格- 库塔法的方法4.四阶龙格- 库塔法在MATLAB 中的应用实例5.总结与展望正文:一、MATLAB 与四阶龙格- 库塔法简介MATLAB 是一种广泛应用于科学计算、数据分析和可视化的编程语言,它为用户提供了丰富的函数库和工具箱,使得各种数学运算和工程计算变得简单易行。
在MATLAB 中,求解方程组是工程和技术领域中常见的问题,而四阶龙格- 库塔法(RK4)是一种高效的数值求解方法。
二、四阶龙格- 库塔法求解方程组的原理四阶龙格- 库塔法是一种基于分步法的四阶数值积分方法,用于求解常微分方程初值问题。
它通过将求解区间分为若干个小区间,然后在每个小区间内,对导数进行四次评估,最后以加权平均的方式获取区间内函数的平均斜率,从而近似求得该区间内函数的值。
通过这种方式,可以逐步求解出方程组的解。
三、MATLAB 中实现四阶龙格- 库塔法的方法在MATLAB 中,可以使用自定义函数和循环结构实现四阶龙格- 库塔法求解方程组。
以下是一个简单的示例:```matlabfunction dXdt = rk4(t, X, f, dt)% 计算k1k1 = f(t, X);% 计算k2k2 = f(t + dt/2, X + 0.5*dt*k1);% 计算k3k3 = f(t + dt/2, X + 0.5*dt*k2);% 计算k4k4 = f(t + dt, X + dt*k3);% 计算四阶龙格- 库塔法导数dXdt = (k1 + 2*k2 + 2*k3 + k4) / 6;end```四、四阶龙格- 库塔法在MATLAB 中的应用实例假设我们要求解如下方程组:```x" = 2*y - zy" = x + 2*zz" = -x + y```我们可以使用MATLAB 中的四阶龙格- 库塔法求解该方程组,具体步骤如下:1.定义方程组的函数形式:```matlabfunction f = example_function(t, X)f(1, X) = [2*X(2) - X(3); X(1) + 2*X(3); -X(1) + X(2)];end```2.设置求解参数:```matlabtspan = [0, 10];dt = 0.01;```3.初始化解:```matlabX0 = [1; 1; 1];```4.使用四阶龙格- 库塔法求解方程组:```matlab[~, X] = ode45(@(t, X) example_function(t, X), tspan, X0, dt);```5.绘制解的曲线:```matlabplot3(X(:, 1), X(:, 2), X(:, 3));xlabel("x");ylabel("y");zlabel("z");title("四阶龙格- 库塔法求解示例");```五、总结与展望四阶龙格- 库塔法作为一种高效的数值积分方法,在MATLAB 中得到了广泛的应用。
一、介绍龙格库塔法龙格库塔法(Runge-Kutta method)是一种数值计算方法,用于求解常微分方程的数值解。
它通过多步迭代的方式逼近微分方程的解,并且具有较高的精度和稳定性。
二、龙格库塔法的原理龙格库塔法采用迭代的方式来逼近微分方程的解。
在每一步迭代中,计算出当前时刻的斜率,然后根据这个斜率来求解下一个时刻的值。
通过多步迭代,可以得到微分方程的数值解。
三、龙格库塔法的公式龙格库塔法可以表示为以下形式:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,k1、k2、k3、k4为斜率,h为步长,tn为当前时刻,yn为当前时刻的解,yn+1为下一个时刻的解。
四、使用matlab实现龙格库塔法在MATLAB中,可以通过编写函数来实现龙格库塔法。
下面是一个用MATLAB实现龙格库塔法的简单例子:```matlabfunction [t, y] = runge_kutta(f, tspan, y0, h)t0 = tspan(1);tf = tspan(2);t = t0:h:tf;n = length(t);y = zeros(1, n);y(1) = y0;for i = 1:n-1k1 = f(t(i), y(i));k2 = f(t(i) + h/2, y(i) + h/2 * k1);k3 = f(t(i) + h/2, y(i) + h/2 * k2);k4 = f(t(i) + h, y(i) + h * k3);y(i+1) = y(i) + h/6 * (k1 + 2*k2 + 2*k3 + k4);endend```以上就是一个简单的MATLAB函数,可以利用该函数求解给定的微分方程。
【Matlab代码实现四阶龙格库塔求解三阶微分方程】1. 引言在数学和工程领域中,微分方程是一种常见的数学工具,用于描述自然和工程系统的动力学行为。
而龙格-库塔(Runge-Kutta)方法是一种数值求解微分方程的常见方法。
在本文中,我将使用Matlab来实现四阶龙格-库塔方法,用以求解一个三阶微分方程的数值解。
2. 四阶龙格-库塔方法简介四阶龙格-库塔方法是一种常见的数值积分方法,用于求解常微分方程的初值问题。
该方法通过逐步逼近真实解,以得到一系列的数值解。
在Matlab中,我们可以使用内置的ode45函数来实现四阶龙格-库塔方法。
然而,在本文中,我将展示如何手动实现该方法,并解决一个具体的三阶微分方程。
3. 三阶微分方程的建立假设我们要解决的三阶微分方程为:\[y''' = f(x, y, y', y'')\]其中,\(f(x, y, y', y'')\)是一个关于自变量x和因变量y及其导数的函数。
我们的目标是使用四阶龙格-库塔方法,求解该微分方程的数值解。
4. Matlab代码实现我们需要将三阶微分方程转化为一组一阶微分方程。
设:\[z_1 = y\]\[z_2 = y'\]\[z_3 = y''\]这样,原始的三阶微分方程可以被转化为如下的一组一阶微分方程:\[z'_1 = z_2\]\[z'_2 = z_3\]\[z'_3 = f(x, z_1, z_2, z_3)\]接下来,我们可以使用四阶龙格-库塔方法来求解上述一组一阶微分方程。
以下是我在Matlab中手动实现四阶龙格-库塔方法的代码:```matlabfunction [t, y] = myRK4(f, a, b, y0, h)N = (b - a) / h;t = zeros(N+1, 1);y = zeros(N+1, length(y0));t(1) = a;y(1, :) = y0;for i = 1:Nk1 = h * f(t(i), y(i, :));k2 = h * f(t(i) + h/2, y(i, :) + k1/2);k3 = h * f(t(i) + h/2, y(i, :) + k2/2);k4 = h * f(t(i) + h, y(i, :) + k3);y(i+1, :) = y(i, :) + (k1 + 2*k2 + 2*k3 + k4) / 6;t(i+1) = t(i) + h;endend```在上述代码中,我定义了一个名为myRK4的函数,用于实现四阶龙格-库塔方法。
MATLAB常微分⽅程数值解——欧拉法、改进的欧拉法与四阶龙格库塔⽅法MATLAB常微分⽅程数值解作者:凯鲁嘎吉 - 博客园1.⼀阶常微分⽅程初值问题2.欧拉法3.改进的欧拉法4.四阶龙格库塔⽅法5.例题⽤欧拉法,改进的欧拉法及4阶经典Runge-Kutta⽅法在不同步长下计算初值问题。
步长分别为0.2,0.4,1.0.matlab程序:function z=f(x,y)z=-y*(1+x*y);function R_K(h)%欧拉法y=1;fprintf('欧拉法:x=%f, y=%f\n',0,1);for i=1:1/hx=(i-1)*h;K=f(x,y);y=y+h*K;fprintf('欧拉法:x=%f, y=%f\n',x+h,y);endfprintf('\n');%改进的欧拉法y=1;fprintf('改进的欧拉法:x=%f, y=%f\n',0,1);for i=1:1/hx=(i-1)*h;K1=f(x,y);K2=f(x+h,y+h*K1);y=y+(h/2)*(K1+K2);fprintf('改进的欧拉法:x=%f, y=%f\n',x+h,y);endfprintf('\n');%龙格库塔⽅法y=1;fprintf('龙格库塔法:x=%f, y=%f\n',0,1);for i=1:1/hx=(i-1)*h;K1=f(x,y);K2=f(x+h/2,y+(h/2)*K1);K3=f(x+h/2,y+(h/2)*K2);K4=f(x+h,y+h*K3);y=y+(h/6)*(K1+2*K2+2*K3+K4);fprintf('龙格库塔法:x=%f, y=%f\n',x+h,y);end结果:>> R_K(0.2)欧拉法:x=0.000000, y=1.000000欧拉法:x=0.200000, y=0.800000欧拉法:x=0.400000, y=0.614400欧拉法:x=0.600000, y=0.461321欧拉法:x=0.800000, y=0.343519欧拉法:x=1.000000, y=0.255934改进的欧拉法:x=0.000000, y=1.000000改进的欧拉法:x=0.200000, y=0.807200改进的欧拉法:x=0.400000, y=0.636118改进的欧拉法:x=0.600000, y=0.495044改进的欧拉法:x=0.800000, y=0.383419改进的欧拉法:x=1.000000, y=0.296974龙格库塔法:x=0.000000, y=1.000000龙格库塔法:x=0.200000, y=0.804636龙格库塔法:x=0.400000, y=0.631465龙格库塔法:x=0.600000, y=0.489198龙格库塔法:x=0.800000, y=0.377225龙格库塔法:x=1.000000, y=0.291009>> R_K(0.4)欧拉法:x=0.000000, y=1.000000欧拉法:x=0.400000, y=0.600000欧拉法:x=0.800000, y=0.302400改进的欧拉法:x=0.000000, y=1.000000改进的欧拉法:x=0.400000, y=0.651200改进的欧拉法:x=0.800000, y=0.405782龙格库塔法:x=0.000000, y=1.000000龙格库塔法:x=0.400000, y=0.631625龙格库塔法:x=0.800000, y=0.377556>> R_K(1)欧拉法:x=0.000000, y=1.000000欧拉法:x=1.000000, y=0.000000改进的欧拉法:x=0.000000, y=1.000000改进的欧拉法:x=1.000000, y=0.500000龙格库塔法:x=0.000000, y=1.000000龙格库塔法:x=1.000000, y=0.303395注意:在步长h为0.4时,要将for i=1:1/h改为for i=1:0.8/h。
函数功能编辑本段回目录ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。
ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)³。
解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.使用方法编辑本段回目录[T,Y] = ode45(odefun,tspan,y0)odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf]y0 是初始值向量T 返回列向量的时间点Y 返回对应T的求解列向量[T,Y] = ode45(odefun,tspan,y0,options)options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)在设置了事件参数后的对应输出TE 事件发生时间YE 事件解决时间IE 事件消失时间sol =ode45(odefun,[t0 tf],y0...)sol 结构体输出结果应用举例编辑本段回目录1 求解一阶常微分方程程序:一阶常微分方程odefun=@(t,y) (y+3*t)/t^2; %定义函数tspan=[1 4]; %求解区间y0=-2; %初值[t,y]=ode45(odefun,tspan,y0);plot(t,y) %作图title('t^2y''=y+3t,y(1)=-2,1<t<4')legend('t^2y''=y+3t')xlabel('t')ylabel('y')% 精确解% dsolve('t^2*Dy=y+3*t','y(1)=-2')% ans =一阶求解结果图% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t)2 求解高阶常微分方程关键是将高阶转为一阶,odefun的书写.F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量dxdy=[y(1),y(2)....]程序:function Testode45tspan=[3.9 4.0]; %求解区间y0=[2 8]; %初值[t,x]=ode45(@odefun,tspan,y0);plot(t,x(:,1),'-o',t,x(:,2),'-*')legend('y1','y2')title('y'' ''=-t*y + e^t*y'' +3sin2t')xlabel('t')ylabel('y')function y=odefun(t,x)y=zeros(2,1); % 列向量y(1)=x(2);y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);endend高阶求解结果图相关函数编辑本段回目录ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tbMatlab中龙格-库塔(Runge-Kutta)方法原理及实现(自己写的,非直接调用)龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
龙格库塔法(Runge-Kutta method)和欧拉法(Euler's method)是两种常用的数值求解常微分方程的方法。
这里分别给出它们的MATLAB实现:1. 龙格库塔法(Runge-Kutta method):```matlabfunction [y, t] = runge_kutta(f, y0, t0, tf, h)% f: 微分方程函数,输入为[y, t],输出为dy/dt% y0: 初始值% t0: 初始时间% tf: 结束时间% h: 步长N = round((tf - t0) / h); % 计算迭代次数t = zeros(1, N + 1); % 初始化时间向量y = zeros(size(y0), N + 1); % 初始化解向量t(1) = t0;y(:, 1) = y0;for i = 1:Nk1 = h * f(y(:, i), t(i));k2 = h * f(y(:, i) + k1 / 2, t(i) + h / 2);k3 = h * f(y(:, i) + k2 / 2, t(i) + h / 2);k4 = h * f(y(:, i) + k3, t(i) + h);y(:, i + 1) = y(:, i) + (k1 + 2 * k2 + 2 * k3 + k4) / 6;t(i + 1) = t(i) + h;endend```2. 欧拉法(Euler's method):```matlabfunction [y, t] = euler_method(f, y0, t0, tf, h)% f: 微分方程函数,输入为[y, t],输出为dy/dt% y0: 初始值% t0: 初始时间% tf: 结束时间% h: 步长N = round((tf - t0) / h); % 计算迭代次数t = zeros(1, N + 1); % 初始化时间向量y = zeros(size(y0), N + 1); % 初始化解向量t(1) = t0;y(:, 1) = y0;for i = 1:Ny(:, i + 1) = y(:, i) + h * f(y(:, i), t(i));t(i + 1) = t(i) + h;endend```使用这两个函数时,需要定义一个表示微分方程的函数`f`,例如:```matlabfunction dydt = my_ode(y, t)dydt = -y; % 一个简单的一阶线性微分方程:dy/dt = -yend```然后调用相应的求解函数,例如:```matlaby0 = 1; % 初始值t0 = 0; % 初始时间tf = 5; % 结束时间h = 0.1; % 步长[y_rk, t_rk] = runge_kutta(@my_ode, y0, t0, tf, h);[y_euler, t_euler] = euler_method(@my_ode, y0, t0, tf, h);```。
龙格-库塔法(Runge-Kutta)数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。
这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。
经典四阶龙格库塔法RK4””或者就是龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4“龙格库塔法”。
令初值问题表述如下。
则,对于该问题的RK4由如下方程给出:其中这样,下一个值(yn+1)由现在的值(yn)加上时间间隔(h)和一个估算的斜率的乘积决定。
该斜率是以下斜率的加权平均:k1是时间段开始时的斜率;k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点tn+h/2的值;k3也是中点的斜率,但是这次采用斜率k2决定y值;k4是时间段终点的斜率,其y值用k3决定。
当四个斜率取平均时,中点的斜率有更大的权值:RK4法是四阶方法,也就是说每步的误差是h5阶,而总积累误差为h4阶。
注意上述公式对于标量或者向量函数(y可以是向量)都适用。
显式龙格库塔法显示龙格-库塔法是上述RK4法的一个推广。
它由下式给出其中(注意:上述方程在不同著述中由不同但却等价的定义)。
要给定一个特定的方法,必须提供整数s(阶段数),以及系数aij(对于1≤j<i≤s),bi(对于i=1,2,2,...,...,s)和ci(对于i=2,3,3,...,...,s)。
这些数据通常排列在一个助记c3a31如果要求方法有精度p则还有相应的条件,也就是要求舍入误差为O(hp+1)时的条件。
这些可以从舍入误差本身的定义中导出。
例如,一个2阶精度的2段方法要求b1+b2=1,b2c2=1/2,以及b2a21=1/2。
在MATLAB中求解微分方程初值问题,一种常用的方法是使用MATLAB的内置函数ode45。
这是一个基于四阶龙格-库塔法的方法,适用于大多数初值问题。
以下是一个简单的例子来说明如何使用ode45求解微分方程初值问题。
考虑这样一个微分方程初值问题:
dy/dx = y, 当x=0时,y=1。
在MATLAB中使用ode45求解此问题的代码如下:
matlab复制代码
% 定义微分方程函数
function dy = odeExample(x,y)
dy = y;
end
% 定义初始条件
x0 = 0;
y0 = 1;
% 定义x的范围
xspan = [01];
% 使用ode45求解
[x,y] = ode45(@odeExample, xspan, y0);
% 绘制解的图形
plot(x, y)
xlabel('x')
ylabel('y')
title('Solution of dy/dx = y')
以上代码中,首先定义了一个函数odeExample,这个函数描述了微分方程的右侧,也就是dy/dx = y的部分。
然后定义了初始条件x0和y0,再通过ode45函数求解微分方程,最后使用plot函数绘制了解的图形。
请注意,对于更复杂的微分方程,你可能需要修改odeExample函数以适应不同的形式。
同时,ode45也允许你更改步长等参数以适应更复杂的问题。
如果需要了解更多关于ode45的使用,可以参考MATLAB的官方文档。
三阶龙格-库塔法的计算公式为:)4(6)2,()2,2(),(3211213121K K K h y y hK hK y h x g K K h y h x g K y x g K i i i i i i i i +++=+-+=++==+ 三阶龙格—库塔公式的Matlab 程序代码:function y = DELGKT3_kuta (f, h ,a,b ,y0,varvec)format long ;N = (b-a )/h;y = zeros (N+1,1);y(1) = y0;x = a:h:b;var = findsym (f);for i=2:N+1K1 = Funval(f,varvec ,[x (i-1) y (i —1)]);K2 = Funval(f,varvec ,[x (i —1)+h/2 y(i —1)+K1*h/2]);K3 = Funval (f ,varvec,[x (i —1)+h y (i-1)—h*K1+K2*2*h ]);y(i) = y(i —1)+h *(K1+4*K2+K3)/6;endformat short ;DELGKT3_kuta函数运行时需要调用下列函数:function fv=Funval(f, varvec, varval )var= findsym(f );if length (var )<4if var (1)==varvec (1)fv=subs (f ,varvec (1),varval(1));elsefv=subs(f ,varvec(2),varval (2));endelsefv=subs(f ,varvec ,varval );end三阶龙格—库塔求解一阶常微分方程应用实例。
用三阶龙格—库塔法求下面常微分方程的数值解。
⎪⎩⎪⎨⎧=+-=1)0(232y y x dx dy 10≤≤x在编辑窗口输入下列程序段,然后执行该程序.syms x y ;z=2*x-3*y+2;yy=DELGKT3_kuta(z ,0。