计算方法上机作业——龙格库塔法matlab程序
- 格式:pdf
- 大小:88.55 KB
- 文档页数:2
参考教材《数值分析》李乃成.梅立泉clearclcformat longm=input('请输入常微分方程的阶数m=');a=input('请输入x下限a=');b=input('请输入x上限b=');h=input('请输入步长h=');ym=input('令y(1,1)=y,y(2,1)=y’,y(3,1)=y’’...请输入ym=','s'); %输入的时候必须按照这个形式输入y1=y(1,1);if m==1 %一阶初值问题单独求解mm=(b-a)/h;y(1,1)=input('请输入在初值点的函数值f(a)=');x=a;y11(1)=y(1,1);for k1=2:(mm+1)y1=y(1,1);K(1,1)=h*(eval(ym)); %计算K1x=x+h/2;y(1,1)=y1+K(1,1)/2;y1=y(1,1);K(1,2)=h*(eval(ym)); %计算K2x=x;y(1,1)=y1+K(1,2)/2-K(1,1)/2;y1=y(1,1);K(1,3)=h*(eval(ym)); %计算K3x=x+h/2;y(1,1)=y1+K(1,3)-K(1,2)/2;y1=y(1,1);K(1,4)=h*(eval(ym)); %计算K4y11(k1)=y11(k1-1)+(K(1,1)+2*K(1,2)+2*K(1,3)+K(1,4))/6; y(1,1)=y11(k1);x=a+(k1-1)*h;endy11else %高阶初值问题mm=(b-a)/h; %一共要求解mm个数据点for k2=1:m %读取初值条件fprintf('请输入%d阶导数的初值f(%d)(a)=\n',(k2-1),(k2-1));y(k2,1)=input('=');endfor k2=1:my22(1,k2)=y(k2,1); %先把初值保存在矩阵y22(m,n)中,m表示第几个所求点,n表示第n阶初值endx=a;for k4=2:(mm+1) %求解mm个数据点的循环for k=1:(m-1) %计算K1,包括每一阶的K1 K(k,1)=h*y(k+1,1); %y(k+1,1)中k+1表示第k+1阶,1表示第一个点;K(k,1)中k表示阶数,1表示K1endK(m,1)=h*(eval(ym));x=x+h/2; %求解K1之前,先重新对x和y赋值for k3=1:my(k3,1)=y(k3,1)+K(k3,1)/2;endfor k=1:(m-1) %计算K2K(k,2)=h*y(k+1,1);endK(m,2)=h*(eval(ym));x=x;for k3=1:my(k3,1)=y(k3,1)-K(k3,1)/2+K(k3,2)/2;endfor k=1:(m-1) %计算K3K(k,3)=h*y(k+1,1);endK(m,3)=h*(eval(ym));x=x+h/2;for k3=1:my(k3,1)=y(k3,1)+K(k3,3)-K(k3,2)/2; %这里容易出错endfor k=1:(m-1) %计算K4K(k,4)=h*y(k+1,1);endK(m,4)=h*(eval(ym));for k5=1:my22(k4,k5)=y22(k4-1,k5)+(K(k5,1)+2*K(k5,2)+2*K(k5,3)+K(k5,4))/6; %这里,除了要求出下一个点的数值,还要求出相应的导数值endfor k6=1:m %除了对y(1,1)重新赋值外,还要对y(2,1)等重新赋值y(k6,1)=y22(k4,k6);endx=a+(k4-1)*h;endy22(:,1) end。
内弹道是指射程较短的导弹或火箭弹在飞行过程中受到大气阻力和重力等作用的飞行轨迹。
内弹道理论研究的是导弹或火箭弹在发射后到离开大气层再进入大气层末时的飞行过程。
内弹道包括导弹或火箭弹在发射后的加速、稳定、制导、飞行以及飞行过程中的动力学性能仿真等诸多内容。
内弹道有着复杂的飞行特性和动力学方程,在实际工程中需要进行准确的计算和仿真。
内弹道的计算中,龙格库塔(Runge-Kutta)法是一种常用的数值积分方法,在求解微分方程等领域有着广泛的应用。
龙格库塔法是由数学家奥特翁格(C. W. Runge)和马丁庫塔(M. W. J. Kutta)于1900年提出的,用于求解常微分方程初值问题,其优点是精度较高,适用范围广。
在内弹道计算中,可以利用龙格库塔法对导弹或火箭弹的飞行轨迹进行数值模拟和计算,得到较为准确的飞行轨迹数据。
在实际工程中,为了方便进行内弹道的计算,可以使用Matlab等数学建模和仿真软件。
Matlab是一种常用的科学计算软件,具有强大的数值计算和仿真功能,可以用于内弹道计算中的龙格库塔法数值模拟。
在Matlab中,可以编写相应的程序,利用龙格库塔法对导弹或火箭弹的飞行过程进行仿真和计算,得到准确的飞行轨迹和动力学性能数据。
内弹道计算是导弹或火箭弹研究设计中的重要内容,龙格库塔法是一种常用的数值积分方法,Matlab是一种常用的科学计算软件,它们的应用能够有效地进行内弹道的计算和仿真,为导弹或火箭弹的研制提供重要的技术支持。
随着技术的不断发展,内弹道计算已经成为导弹或火箭弹研究设计中不可或缺的一部分。
在内弹道计算中,龙格库塔法是一种常用的数值积分方法,可以对导弹或火箭弹的飞行轨迹进行数值模拟和计算,提供准确的飞行轨迹数据。
而Matlab作为一种强大的科学计算软件,对于内弹道的计算和仿真也有着重要的应用价值。
在实际工程中,使用Matlab编写程序,利用龙格库塔法对导弹或火箭弹的飞行轨迹进行数值模拟和计算,将为导弹或火箭弹的研制提供重要的技术支持。
一、介绍龙格库塔法龙格库塔法(Runge-Kutta method)是一种数值计算方法,用于求解常微分方程的数值解。
它通过多步迭代的方式逼近微分方程的解,并且具有较高的精度和稳定性。
二、龙格库塔法的原理龙格库塔法采用迭代的方式来逼近微分方程的解。
在每一步迭代中,计算出当前时刻的斜率,然后根据这个斜率来求解下一个时刻的值。
通过多步迭代,可以得到微分方程的数值解。
三、龙格库塔法的公式龙格库塔法可以表示为以下形式:k1 = f(tn, yn)k2 = f(tn + h/2, yn + h/2 * k1)k3 = f(tn + h/2, yn + h/2 * k2)k4 = f(tn + h, yn + h * k3)yn+1 = yn + h/6 * (k1 + 2k2 + 2k3 + k4)其中,k1、k2、k3、k4为斜率,h为步长,tn为当前时刻,yn为当前时刻的解,yn+1为下一个时刻的解。
四、使用matlab实现龙格库塔法在MATLAB中,可以通过编写函数来实现龙格库塔法。
下面是一个用MATLAB实现龙格库塔法的简单例子:```matlabfunction [t, y] = runge_kutta(f, tspan, y0, h)t0 = tspan(1);tf = tspan(2);t = t0:h:tf;n = length(t);y = zeros(1, n);y(1) = y0;for i = 1:n-1k1 = f(t(i), y(i));k2 = f(t(i) + h/2, y(i) + h/2 * k1);k3 = f(t(i) + h/2, y(i) + h/2 * k2);k4 = f(t(i) + h, y(i) + h * k3);y(i+1) = y(i) + h/6 * (k1 + 2*k2 + 2*k3 + k4);endend```以上就是一个简单的MATLAB函数,可以利用该函数求解给定的微分方程。
题一:a)y’=y+2x , 欧拉方法:112()2n n h y y k k +=++,12n n k y x =+,2112()n n k y hk x +=++; 龙格-库塔方法:11234(22)6n n h y y k k k k +=++++,12n n k y x =+,12222n n k h k y h x ⎛⎫=+++ ⎪⎝⎭,23222n n k h k y h x ⎛⎫=+++ ⎪⎝⎭,432()n n k y hk x h =+++ 精确解:y=3e x -2x-2。
以步长h=0.1 在0<=x<=1内的计算结果如下所示:0.1000 1.1150 1.1155 1.11550.2000 1.2631 1.2642 1.26420.3000 1.4477 1.4496 1.44960.4000 1.6727 1.6755 1.67550.5000 1.9423 1.9462 1.94620.6000 2.2613 2.2664 2.26640.7000 2.6347 2.6413 2.64130.8000 3.0684 3.0766 3.07660.9000 3.5685 3.5788 3.57881.0000 4.1422 4.1548 4.1548b)文案 编辑词条B 添加义项 ?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程Matlab 应用使用Euler 和Rungkutta 方法解臂状摆的能量方程背景单摆是常见的物理模型,为了得到摆角θ的关于时间的函数,来描述单摆运动。
由角动量定理我们知道εJ M =化简得到 0sin 22=+θθlg dt d 在一般的应用和计算中,只考虑摆角在5度以内的小摆动,因为可以吧简化为θ,这样比较容易解。
实际上这是一个解二阶常微分方程的问题。
在这里的单摆是一种特别的单摆,具有均匀的质量M 分布在长为2的臂状摆上,使用能量法建立方程 WT = h mg ?=2J 21ω 化简得到θθcos35499.722=dtd 重力加速度取9.806651使用欧拉法令dxdy z =,这样降阶就把二阶常微分方程转化为一阶微分方程组,再利用向前Euler 方法数值求解。
y(i+1)=y(i)+h*z(i);z(i+1)=z(i)+h*7.35499*cos(y(i));y(0)=0z(0)=0精度随着h 的减小而更高,因为向前欧拉方法的整体截断误差与h 同阶,(因为是用了泰勒公式)所以欧拉方法的稳定区域并不大。
2.RK4-四阶龙格库塔方法使用四级四阶经典显式Rungkutta 公式稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4阶。
所以比欧拉稳定。
运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧拉法产生了较大的误差h=0.01h=0.0001,仍然是开始较为稳定,逐渐误差变大总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。
通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。
三个程序欧拉法clear;clch=0.00001;a=0;b=25;x=a:h:b;y(1)=0;z(1)=0;for i=1:length(x)-1 % 欧拉y(i+1)=y(i)+h*z(i);z(i+1)=z(i)+h*7.35499*cos(y(i));endplot(x,y,'r*');xlabel('时间');ylabel('角度');A=[x,y];%y(find(y==max(y)))%Num=(find(y==max(y)))[y,T]=max(y);fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')fprintf('周期等于%d',T*h) %周期legend('欧拉');龙格库塔方法先定义函数rightf_sys1.mfunction w=rightf_sys1(x,y,z)w=7.35499*cos(y);clear;clc;%set(0,'RecursionLimit',500)h=0.01;a=0;b=25;x=a:h:b;RK_y(1)=0; %初值RK_z(1)=0; %初值for i=1:length(x)-1K1=RK_z(i);L1=rightf_sys1(x(i),RK_y(i),RK_z(i)); % K1 and L1 K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1 );K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2 );K4=RK_z(i)+h*L3;L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3); % K4 and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,RK_y,'b+');xlabel('Variable x');ylabel('Variable y');A=[x,RK_y];[y,T]=max(RK_y);legend('RK4方法');fprintf('角度峰值等于%d',y) %角度的峰值也就是πfprintf('\n')fprintf('周期等于%d',T*h) %周期两个方法在一起对比使用跟上一个相同的函数rightf_sys1.mclear;clc; %清屏h=0.0001;a=0;b=25;x=a:h:b;Euler_y(1)=0;Euler_z(1)=0; %欧拉的初值RK_y(1)=0;RK_z(1)=0; %龙格库塔初值for i=1:length(x)-1%先是欧拉法Euler_y(i+1)=Euler_y(i)+h*Euler_z(i);Euler_z(i+1)=Euler_z(i)+h*7.35499*cos(Euler_y(i));%龙格库塔K1=RK_z(i); L1=rightf_sys1(x(i),RK_y(i),RK_z(i)); % K1 and L1 K2=RK_z(i)+0.5*h*L1;L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1);% K2 and L2K3=RK_z(i)+0.5*h*L2;L3=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K2,RK_z(i)+0.5*h*L2 );% K3 and L3K4=RK_z(i)+h*L3;L4=rightf_sys1(x(i)+h,RK_y(i)+h*K3,RK_z(i)+h*L3); % K4 and L4RK_y(i+1)=RK_y(i)+1/6*h*(K1+2*K2+2*K3+K4);RK_z(i+1)=RK_z(i)+1/6*h*(L1+2*L2+2*L3+L4);endplot(x,Euler_y,'r-',x,RK_y,'b-');[y,T]=max(RK_y);fprintf('角度峰值等于%d',y) %角度的峰值也就是πfpri ntf('\n') fprintf('周期等于%d',T*h) %周期xlabel('时间');ylabel('角度');legend('欧拉','RK4');。
常微分方程组的四阶RUNGEKUTTA龙格库塔法MATLAB实现欢迎使用 Python 版的实现!数值解常微分方程组的四阶 Runge-Kutta 方法(也被称为 RK4 方法)可以通过迭代的方式逐步逼近精确解。
对于一阶常微分方程组:dy/dt = f(t, y)我们可以通过下面的公式来计算下一个时间步长上的近似解:y(n+1)=y(n)+(1/6)(k1+2k2+2k3+k4)其中k1=h*f(t(n),y(n))k2=h*f(t(n)+h/2,y(n)+k1/2)k3=h*f(t(n)+h/2,y(n)+k2/2)k4=h*f(t(n)+h,y(n)+k3)这里,h代表时间步长,t(n)代表当前时间,y(n)代表当前解。
f(t,y)是给定的方程组。
对于四阶 Runge-Kutta 方法的 MATLAB 实现,可以按照以下步骤进行。
1.首先,定义需要求解的常微分方程组。
function dydt = equations(t, y)dydt = zeros(2, 1);dydt(1) = y(2); % 根据方程组的具体形式修改dydt(2) = -y(1); % 根据方程组的具体形式修改end2.定义RK4方法的求解函数。
function [t, y] = rk4_solver(equations, tspan, y0, h) t = tspan(1):h:tspan(2);y = zeros(length(y0), length(t));y(:,1)=y0;for i = 1:length(t)-1k1 = h * equations(t(i), y(:, i));k2 = h * equations(t(i) + h/2, y(:, i) + k1/2);k3 = h * equations(t(i) + h/2, y(:, i) + k2/2);k4 = h * equations(t(i) + h, y(:, i) + k3);y(:,i+1)=y(:,i)+(k1+2*k2+2*k3+k4)/6;endend3. 调用 rk4_solver 函数求解常微分方程组。
matlab用经典龙格库塔法求微分方程组初值问题程序经典龙格-库塔法是一种数值求解常微分方程的方法。
以下是一个使用MATLAB实现经典龙格-库塔法求解微分方程组的示例代码:```matlabfunction [t, y] = runge_kutta(f, y0, tspan, N)% f: 微分方程右边的函数句柄% y0: 初始值% tspan: 时间范围 [t0, tf]% N: 步数t = linspace(tspan(1), tspan(2), N+1); % 时间向量y = zeros(size(t)); % 初始化解向量y(1) = y0; % 设置初始值for i = 1:N% 计算四个点上的值k1 = f(t(i), y(i));k2 = f(t(i) + h/2, y(i) + h/2k1);k3 = f(t(i) + h/2, y(i) + h/2k2);k4 = f(t(i) + h, y(i) + hk3);% 更新解向量y(i+1) = y(i) + h/6(k1 + 2k2 + 2k3 + k4);endend```在上述代码中,我们定义了一个名为 `runge_kutta` 的函数,该函数接受微分方程右边的函数句柄 `f`、初始值 `y0`、时间范围 `tspan` 和步数 `N` 作为输入,并返回时间向量 `t` 和解向量 `y`。
在函数内部,我们首先生成时间向量 `t`,然后初始化解向量 `y`,并设置初始值 `y0`。
接下来,我们使用一个循环来迭代计算每个时间点上的值,并使用龙格-库塔公式更新解向量。
最后,我们返回时间向量 `t` 和解向量 `y`。
要使用该函数求解微分方程组,可以按照以下步骤进行:1. 定义微分方程右边的函数句柄 `f`,该函数接受时间和解向量作为输入,并返回微分方程的右侧值。
2. 定义初始值 `y0`。
3. 定义时间范围 `tspan`,该向量包含时间范围的起始和终止值。