(完整版)16.2二次根式的乘除教案.doc
- 格式:doc
- 大小:328.01 KB
- 文档页数:5
二次根式乘除( 1)教课方案课型:新授学习目标:掌握二次根式的乘法法例,并能进行化简或计算。
教课重难点:能用二次根式的乘法法例解决简单的计算。
重难点打破方法:类比法、小组合作教课准备:微课()直尺()圆规()课件()教课过程:教学集备共案(个案用红笔)师生活动环节一、学 1. 化简:1、展错纠错前准(1) 4 9 (2) 9 4 2. 针对解说备:(3)9 4(4)5242二、探请同学们仔细阅读课本6--7 页,并划出你以为重要的内容。
1、小组合作研究沟通究活 1. 计算:2、小组报告动 4 9 =________ 4 9 =________。
3、商讨新知(一)100 × 36 =_____,100×36 =_______。
4、小组总结方法独立 2.经过计算,你发现:5、小组派代表登台报告思4 9 _______ 4 9 6、教师总结概括考·解100 ×36 _____ 100×36 (填“ >,<,=”)得出结论决问3.由此获得:二次根式乘法法例:题a ·b = (a 0,b 0)例1 计算(1)5×7 ( 2)5· 3a ·1 b 34.用“ >、 <或=”填空.16×25 16× 25100 36 ________ 100 ×36由此获得:积的算数平方根的性质:ab = a·b(a 0, b 0)例2计算(1) 16×9 (2) 3 9x2y2( 1) 1 8 () 2 22 24 9 ( 3)2 4a b注意:1. 被开方数都是数;2.无特别说明,全部字母均表示正数。
(二)例 3 计算:师(1) 6×( - 15 )(2) 3 1×12生3交流合(3)2 3 ×(- 27)(4)2x 21 xy 作探究例4化简(1)25 36(2)225 1、师生研究2、小组总结3、学生登台解说4、教师概括5.总结方法自1. 判断以下各式能否正确,不正确的请予以更正:我(1) (-4) ×(-9) = - 4 ×-9()测试(2) 2× 2=2 2 ( )(3) 9a =3a ( )2.填空:(1)121 =;196 =;(2) 2× 3=24×6=(3)18×8 =(4)2 12a2b2=。
二次根式乘除教案教案一:二次根式之乘法教学目标:1.了解二次根式的定义和性质;2.掌握二次根式的乘法运算法则;3.能够正确应用乘法法则计算二次根式之乘积。
教学重点:1.二次根式的乘法的计算方法;2.运用乘法法则计算二次根式之乘积。
教学难点:在计算过程中遇到含有相同根指数的二次根式如何简化。
教学步骤:Step 1 引入新知识(5分钟)教师引导学生回顾和复习二次根式的定义和性质,并提出乘法的问题,如何计算两个二次根式的乘积。
Step 2 概念解释(10分钟)教师通过例题的形式解释二次根式的乘法法则,并给出一些常见的二次根式乘法的计算方法。
Step 3 例题演示(15分钟)教师用具体的例题演示二次根式乘法的计算过程,引导学生了解每一步的操作及其原理。
在解题的过程中,特别关注含有相同根指数的二次根式如何简化。
Step 4 练习(20分钟)教师组织学生进行练习,巩固所学的二次根式乘法运算法则。
Step 5 总结归纳(5分钟)教师对本节课所学的内容进行总结和归纳,帮助学生理清思路,加深对二次根式乘法运算法则的理解。
同时,提醒学生在做题时注意简化二次根式和合并同类项。
Step 6 作业布置(5分钟)教师布置相应的习题作为课后作业,要求学生独立完成并检查答案。
教案二:二次根式之除法教学目标:1.了解二次根式的定义和性质;2.掌握二次根式的除法运算法则;3.能够正确应用除法法则计算二次根式之商。
教学重点:1.二次根式的除法的计算方法;2.运用除法法则计算二次根式之商。
教学难点:在计算过程中遇到含有相同根指数的二次根式如何简化。
教学步骤:Step 1 引入新知识(5分钟)教师引导学生回顾和复习二次根式的定义和性质,并提出除法的问题,如何计算两个二次根式的商。
Step 2 概念解释(10分钟)教师通过例题的形式解释二次根式的除法法则,并给出一些常见的二次根式除法的计算方法。
Step 3 例题演示(15分钟)教师用具体的例题演示二次根式除法的计算过程,引导学生了解每一步的操作及其原理。
16.2 二次根式的乘除(1)- 2022-2023学年人教版八年级数学下册说课稿(含详解)一、教材分析本节课是人教版八年级数学下册的第16单元,本单元共有4个知识点,分别是:1.二次根式的概念与性质。
2.二次根式的加减运算。
3.二次根式的乘法。
4.二次根式的除法。
本节课主要围绕第3个知识点展开,即二次根式的乘法。
学生在学习完二次根式的概念与性质以及二次根式的加减运算后,已经能够准确理解二次根式的含义,并能进行简单的加减运算。
通过本节课的学习,学生将进一步掌握二次根式的乘法运算规则,培养他们的数学思维能力和运算能力。
二、教学目标1.知识与能力:掌握二次根式的乘法运算规则,能够准确运用乘法的规则计算二次根式的值。
2.过程与方法:培养学生运用数学思维解决实际问题的能力,以及抽象思维和逻辑推理能力。
3.情感态度与价值观:培养学生对数学知识的兴趣和学习的主动性,培养他们坚持不懈,勤奋学习的品质。
三、教学重点1.二次根式的乘法运算规则及其应用。
2.培养学生的逻辑思维和运算能力。
四、教学内容和步骤1. 导入(5分钟)通过提问复习上节课学习的内容,引导学生复习二次根式的概念和加减运算规则。
2. 新课讲解(20分钟)步骤一:引导学生进行观察通过一个例子引导学生观察二次根式的乘法规律,并与之前学过的一次根式的乘法进行对比。
步骤二:提出乘法规则根据学生的观察结果,提出二次根式的乘法规则:对于任意实数a和b,以及非负实数m和n,有:√m * √n = √(m * n)步骤三:运用乘法规则解决问题通过简单的例子,引导学生运用乘法规则解决实际问题。
步骤四:拓展与延伸通过更复杂的例子,延伸讨论二次根式的乘法规则的应用。
3. 讲解与练习(15分钟)步骤一:讲解与演示讲解更复杂的乘法运算,如√3 * √5 * √2。
步骤二:练习与巩固提供一些练习题,让学生分组完成练习,并进行讲解和讨论。
4. 小结(5分钟)通过对本节课内容的回顾总结,帮助学生理解和记忆所学知识点。
16.2 二次根式的乘除第一课时教学内容二次根式的乘法法则以及二次根式的乘法法则的逆用教学目标理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=·(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键重点:·=(a≥0,b≥0),=·(a≥0,b≥0)及它们的运用.难点:发现规律,导出·=(a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或==×.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1)×=_______,=______;(2)×=_______,=________.(3)×=________,=_______.参考上面的结果,用“>、<或=”填空.×_____,×_____,×________2.观察计算结果,你能发现什么规律?老师点评(纠正学生练习中的错误)二、探索新知(学生活动)选三个小组里面的一名同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为·=.(a ≥0,b ≥0)反过来: =·(a ≥0,b ≥0)例1.计算(1)× (2)× (3)× (4)×分析:直接利用·=(a ≥0,b ≥0)计算即可.解:(1)×=(2)×==(3)×==9(4)×==例2 化简(1) (2) (3)(4) (5) (6)32b a 4 分析:利用=·(a ≥0,b ≥0)直接化简即可.各小组四号完成上面的题目,然后教师进行点评三、展示交流(1)完成例3计算(学生练习,老师点评)利用乘法的交换律和结合律,将两个系数和两个二次根式分别相乘,同时注意符号四、堂清巩固判断下列各式是否正确,不正确的请予以改正: (1)(2)×=4××=4×=4=8完成书上的练习题1和2五、课堂小结本节课应掌握:(1)·==(a≥0,b≥0),=·(a≥0,b≥0)及其运用.六、布置作业1.课本P7练习题3习题16.2第1题6题2.课后作业:《练习册》中的相关内容七、板书设计16.2 二次根式的乘除(1)(1)·==(a≥0,b≥0)(2)=·(a≥0,b≥0).八、课后回顾16.2 二次根式的乘除第二课时教学内容二次根式除法法则和除法法则的逆用教学目标理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1.重点:理解=(a≥0,b>0),=(a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1)=________,=_________;(2)=________,=________;(3)=________,=_________;(4)=________,=________.规律:______;______;_______;_______.3.观察计算结果,你能发现什么规律?每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:=(a≥0,b>0),反过来,=(a≥0,b>0)下面我们利用这个规定来计算和化简一些题目.完成例4并计算:(1)(2)(3)(4)完成例5.并化简:(1)(2)(3)(4)分析:直接利用=(a ≥0,b>0)就可以达到化简之目的.三、展示交流 例6 计算: (1)53(注意本题可以有不同的解法,解法2采用分母有理化的方法) (2)2723 (3)a28四、堂清巩固例7 设长方形的面积为S ,相邻两边长分别为a ,b ,已知S=32,b=10,求a 完成习题16.2的第10题11题五、课堂小结本节课要掌握=(a ≥0,b>0)和=(a ≥0,b>0)及其运用.六、布置作业1.教材P 10 练习题 习题16.2 4、5、7、11. 拓展题12题2.课后作业:《练习册》中的相关内容 七、板书设计16.2 二次根式的乘除(2)(1)=(a ≥0,b>0)(2)=(a ≥0,b>0)八、课后回顾第二课时作业设计一、选择题1.计算的结果是( ).A .B .C .D .2.阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是().A.2 B.6 C. D.二、填空题1.分母有理化:(1)=_________;(2)=________;(3)=______.2.已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1)·(-)÷(m>0,n>0)(2)-3÷()×(a>0)答案:一、1.A 2.C二、1.(1) ;(2);(3)2.三、1.设:矩形房梁的宽为x(cm),则长为xcm,依题意,得:(x)2+x2=(3)2,4x2=9×15,x=(cm),x·x=x2=(cm2).2.(1)原式=-÷=-=-=-(2)原式=-2=-2=-a16.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1),(2),(3)老师点评:=,=,=2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.它们的比是.二、探索新知再观察例4例5和例6中各小题的最终结果,可以发现哪些特点?观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.=.例1.(1); (2); (3)三、展示交流教材P14练习2、3四、堂清巩固例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:==-1,==-,同理可得:=-,……从计算结果中找出规律,并利用这一规律计算(+++……)(+1)的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=(-1+-+-+……+-)×(+1)=(-1)(+1)=2002-1=2001五、课堂小结本节课应掌握:最简二次根式的概念及其运用.六、布置作业1.教材P15习题16.2 相关习题.2.课后作业:《练习册》中的相关内容七、板书设计16.2 二次根式的乘除(3)最简二次根式八、课后回顾第三课时作业设计一、选择题1.如果(y>0)是二次根式,那么,化为最简二次根式是().A.(y>0) B.(y>0) C.(y>0) D.以上都不对 2.把(a-1)中根号外的(a-1)移入根号内得().A. B. C.- D.-3.在下列各式中,化简正确的是()A.=3 B.=±C.=a2 D.=x4.化简的结果是()A.- B.- C.- D.-二、填空题1.化简=_________.(x≥0)2.a化简二次根式号后的结果是_________.三、综合提高题1.已知a为实数,化简:-a,阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:解:-a=a-a·=(a-1)2.若x、y为实数,且y=,求的值.答案:一、1.C 2.D 2.C 4.C二、1.x 2.-三、1.不正确,正确解答:因为,所以a<0,原式=-a·=·-a·=-a+=(1-a)2.∵∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=∴.。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。
《二次根式的乘除》作业设计方案(第一课时)一、作业目标通过本作业的设计与完成,学生应掌握二次根式的乘除基本法则,能够熟练运用这些法则进行二次根式的化简与计算,并能够解决简单的实际问题。
同时,通过作业的完成,培养学生的数学思维能力和自主学习能力。
二、作业内容本作业内容主要围绕二次根式的乘除进行设计,具体包括以下内容:1. 基础练习:包括二次根式乘除的基本法则,如根号与根号相乘、根号与常数相乘等。
通过大量的练习,使学生熟练掌握这些基本法则。
2. 复杂计算:设计一些较为复杂的二次根式乘除计算题,如涉及多个根式、分数根式等。
通过这些题目的练习,使学生能够灵活运用所学知识,提高解题能力。
3. 应用题:设计一些实际问题的情境,要求学生运用所学知识进行二次根式的乘除计算,如测量物体长度、计算面积等。
通过解决实际问题,使学生感受到数学知识的实用性。
4. 探究题:设计一些具有探究性的题目,如让学生自行设计二次根式的乘除计算题、探索不同计算方法等。
通过探究题的练习,培养学生的创新意识和自主学习能力。
三、作业要求1. 基础练习部分要求学生对每个法则进行熟练掌握,并能够独立完成相关练习题。
2. 复杂计算部分要求学生能够灵活运用所学知识,解决较为复杂的计算问题。
在解题过程中,要注重思路的清晰和计算的准确性。
3. 应用题部分要求学生能够将所学知识应用到实际问题中,注重实际问题的分析和解决能力。
4. 探究题部分要求学生发挥自己的创新意识和自主学习能力,积极思考和探索不同的解题方法。
四、作业评价教师根据学生的作业完成情况进行评价,主要从以下几个方面进行:1. 对基础知识的掌握程度;2. 解题思路的清晰程度;3. 计算的准确性;4. 实际问题的分析和解决能力;5. 探究题的完成情况和创新性。
五、作业反馈教师根据学生的作业完成情况,给予相应的反馈和建议。
对于掌握不好的部分,教师要进行重点讲解和辅导;对于表现优秀的学生,要给予肯定和鼓励,并引导他们进一步拓展和深化所学知识。
《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。
第4课时 16.2 二次根式的乘除导学案(1)【学习目标】(a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和 化简【学习重点】灵活运用法则进行计算、化简【学习难点】a ≥0,b ≥0)化简二次根式 一、学前准备1、什么叫二次根式?2、二次根式学了哪些性质?二、探索思考(一)探究1:填空:(1=____;(2=____;(3.你发现什么规律练习一、计算(1= = (2= =三、典例分析 例1 化简(1(2(3(4(5练习二、 化简:;例3、计算: ①②练习三、计算(1)123⨯ (2)184362⨯ (3)xy y 3127⋅四、当堂反馈 1、化简2、判断下列各式是否正确,不正确的请予以改正:(1(23、下列计算结果正确的是( )A .122-=-B .2235x x x += C,0)x o y ≥≥ Dx y +4)A .1x ≥B .1x ≥-C .11x -≤≤D .1x ≥或1x ≥-5n 为( ) A .5 B .4 C .3 D .2 6、化简(1)12149⨯ (2)328c ab (3)224y x x +7、计算8、(1)一个长方形的长和宽分别是10和22,求这个长方形的面积。
(2)一个正方形的面积为242,求这个正方形的边长。
五、学习反思====⨯============345200)3(11214)2(____300____75_____72____48____45____32____27____24_____20____18____12____8)1(c b a ==+==-32232284)5(1620)4(n m n m 314)1(x yxy ••183)32(276)2(⨯-⨯第5课时 16.2 二次根式的乘除导学案(2)【学习目标】a≥0,b>0a≥0,b>0)及利用它们进行运算【学习重点】二次根式的除法及化简【学习难点】二次根式化简一、学前准备1.写出二次根式的乘法法则及逆向等式:,.二、探索思考(一)探究1:填空(1;(2;(3;规律:一般地,二次根式的除法法则是练习一、1、计算:(1(2(3(4三、典例分析例1、化简:(1(2(3)2748练习二、化简:((2(3)1850例2、计算(1(2(3练习三、计算(1)65(2)3232(3)x318例3.,且x为偶数,求(1+x四、当堂反馈1、).A.27B.27C D2、计算:(1(2)aa62÷(3(43、若x、y为实数,且x y-的值.五、学习反思第6课时 16.2 二次根式的乘除导学案(3)【学习目标】理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【学习重点】把不是最简二次根式的化成最简二次根式 【学习难点】把不是最简二次根式的化成最简二次根式 一、学前准备 1、=ab )0,0(≥≥b a ;=ab)0,0(≥>b a 2、计算:(1)10453⨯ (2)540 (3)15254二、探索思考1、思考:观察上面计算的最后结果,可以发现这些式子中的二次根式什么特点? 特点:满足上述特点的二次根式,叫做最简二次根式.2、在二次根式的运算中,一般要把最后结果化为 ,并且分母中不含练习一、1、指出下列各式中的最简二次根式: (填序号)2、把 下列二次根式的化成最简二次根式(1)32 (2)40 (3)5.1 (4)34三、典例分析例1、把下列各式化简(分母有理化):(4练习二、把下列各式化简(分母有理化):例2、电视塔越高,从塔顶发射的电磁波传播得越远,从而能收看到电视节目的区域就越大.如果电视塔高hkm,电视节目信号的传播半径为r km,则它们之间存在近似关系 ,其中R 是地球半径,R≈6400km.如果两个电视塔的高分别是h 1km ,h 2 km,那么它们的传播半径的比是 .你能将这个式子化简吗?例3、长方形的面积为S ,相邻两边长分别为a ,b. ,已知S=53,11=b ,求a 。
分式乘除教学设计第1篇:分式乘除教学设计《16.2 二次根式的乘除》教学设计一.教材分析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、学情分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.三、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。
课题:16.2 二次根式的乘除教学时间:教学目标:知识与技能1、会进行简单的二次根式的乘除法运算。
2、会对二次根式进行适当化简。
3、知道什么是最简二次根式。
过程与方法能用二次根式的性质以及乘除法法则进行根式的化简。
情感、态度与价值观通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
教学重点:理解二次根式的乘除法法则。
教学难点:灵活运用二次根式的乘除法法则进行计算和化简。
教学方法、手段、准备、课型等:1、启发引导式、问题探究式、合作交流式;2、多媒体教学;3、备教材和备学生;4、新授课。
教学时数:4课时教学过程:第一课时教学内容及步骤:一、导入新课活动1:。
;)0()0()(22≥=≥=a a a a a a 二、讲解新课 探究一:活动1:计算下列各式,观察计算结果,你能发现什么规律?;,_____94_____94)1(=⨯=⨯ ;,_____2516_____2516)2(=⨯=⨯。
,_____3625_____3625)3(=⨯=⨯(学生回答或展示) 教师点评:;,694694)1(=⨯=⨯ ;,202516202516)2(=⨯=⨯ 。
,303625303625)3(=⨯=⨯活动2:总结二次跟式的乘法法则 (学生回答或展示) 教师点评:一般地,二次跟式的乘法法则是:。
,)00(≥≥=⨯b a ab b a 活动3:例题讲解 例1 计算:;53)1(⨯;解:1553)1(=⨯。
2731)2(⨯例3 计算:三、课堂练习教科书第7页练习1、计算。
四、作业布置教科书第10页复习巩固1、计算(1)(2)。
五、板书设计 六、教学反思。
3927312731)2(==⨯=⨯;714)1(⨯;10253)2(⨯xy x 313)3(⋅;解:277272714714)1(22=⨯=⨯=⨯=⨯;2302561052310253)2(2=⨯=⨯⨯=⨯。
y x y x x xy xy x ==⋅=⋅2331313)3(第二课时教学内容及步骤:一、导入新课活动1:二次跟式的乘法法则? (学生回答或展示)教师点评:二次跟式的乘法法则是:。
二次根式的乘除
教案总序号:4时间:
教学内容
a ·
b =ab (a≥0,b≥0),反之 ab = a · b (a≥0,b≥0)及其运用.
教学目标
理解 a · b =ab (a≥0,b≥0),ab = a · b (a≥0,b≥0),并利用它们
进行计算和化简
由具体数据,发现规律,导出 a · b =ab (a≥0,b≥0)并运用它进行计算;? 利用逆向思维,得出ab = a · b (a≥0,b≥0)并运用它进行解题和化简.教学重难点关键
重点: a · b =ab (a≥0,b≥0),ab = a · b (a≥0,b≥0)及它们的运用.
难点:发现规律,导出 a · b =ab (a≥0,b≥0).
关键:要讲清 ab (a<0,b<0)= a g b ,如( 2) ( 3) = ( 2) ( 3) 或( 2) ( 3) = 2 3= 2 ×3.
教学过程
一、复习引入
(学生活动)请同学们完成下列各题.
1.填空
( 1) 4 ×9 =_______, 4 9 =______;
( 2)16×25 =_______,16 25 =________.
( 3)100×36 =________, 100 36 =_______.
参考上面的结果,用“>、<或=”填空.
4 ×9 _____ 4 9 ,16 × 2
5 _____ 1
6 25 ,100 ×36 ________ 100 36
2.利用计算器计算填空
( 1) 2 ×3 ______ 6 ,(2) 2 × 5 ______ 10 ,
( 3) 5 × 6 ______30 ,(4)4 × 5 ______20 ,
( 5)7 ×10 ______70 .
老师点评(纠正学生练习中的错误)
二、探索新知
(学生活动)让3、 4 个同学上台总结规律.
老师点评:( 1)被开方数都是正数;
( 2)两个二次根式的乘除等于一个二次根式, ?并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.
一般地,对二次根式的乘法规定为
a ·
b =ab
反过来 :ab = a · b
例 1.计算.( a≥0, b ≥ 0)(a≥ 0, b ≥0)
( 1)5×7 ( 2)1
× 9 ( 3)9×27 ( 4)
1
× 6 3 2
分析:直接利用 a · b =ab (a≥0,b≥0)计算即可.解:( 1) 5 × 7 = 35
(2) 1 ×9 = 1
9 = 3
3 3
(3)9 ×27 =9 27 92 3 =9 3
(4)1
× 6 = 1 6 = 3 2 2
例 2 化简
(1)9 16 ( 2)16 81 (3)81 100 (4)9x2y2 ( 5)54
分析:利用ab = a · b (a≥0,b≥0)直接化简即可.解:( 1)9 16 = 9 × 16 =3×4=12
( 2)16 81 = 16 ×81 =4×9=36
( 3)81 100 = 81 × 100 =9×10=90
( 4)9x2 y2 = 32 ×x2 y2 = 32×x2×y2=3xy
2
6
( 5) 54 = 9 6 = 3 × 6 =3 三、巩固练习
( 1)计算(学生练习,老师点评)
① 16 × 8② 3 6 × 2 10
③ 5a · 1
ay
5
(2) 化简 :
20 ; 18 ; 24 ; 54 ;
12a 2b 2
教材 P 11 练习全部 四、应用拓展
例 3. 判断下列各式是否正确,不正确的请予以改正:
( 1)
( 4) ( 9)4 9
( 2) 4
12
× 25 =4× 12 × 25 =4
12
× 25 =4 12 =8 3
25 25 25
解:( 1)不正确.
改正:
( 4) ( 9) = 4 9 = 4 × 9 =2× 3=6
( 2)不正确.
改正: 4
12
× 25 = 112 × 25 = 112
25 = 112 = 16 7 = 4 7
25 25 25
五、归纳小结
本节课应掌握: ( 1) a · b = ab =( a ≥ 0, b ≥ 0), ab = a · b ( a ≥ 0 , b
≥0)及其运用.
六、布置作业
1.课本 P 11 1, 4, 5, 6.(1)( 2). 2.选用课时作业设计. 第一课时作业设计 一、选择题
1
1.化简 a
的结果是(
).
a
A .
a
B .
a
C . -
a
D . -
a
2.等式
x 1g x 1
x 2 1 成立的条件是(
)
A . x ≥ 1
B . x ≥ -1
C . -1≤ x ≤1
D . x ≥1 或
x ≤ -1
3.下列各等式成立的是(
).
A .4
5 × 2
5 =8
5
B .5
3 × 4
2 =20
5
C. 4 3 ×3 2 =75 D .5 3 ×4 2 =20 6 二、填空
1.1014 =_______.
2.自由落体的公式
1
10m/s2),若物体下落的高S= gt2(g 重力加速度,它的
2
度 720m,下落的是 _________.
三、合提高
1.一个底面 30cm× 30cm 方体玻璃容器中装水,?将一部分水例入一个底面正方形、高10cm 桶中,当桶装水,容器中的水面下降了20cm,桶的底面是多少厘米?
2.探究程:察下列各式及其程.
( 1) 2 2 2
= 2
3 3
: 2 2 = 22 × 2 = 22 2 = 23 (23 2) 2
3 3 3 3 3
23 2 2 2(22 1) 2
= 2
=
1 2
2 1 22 1 22 1 2
22 3
( 2) 3 3
= 3
3 8 8
: 3 3 = 32× 3 = 33 = 33 3 3
8 8 8 32 1
3(32 1) 3 3(32 1) 3
= 3 3
=
1 3
2 1 32 1 8
32
同理可得: 4
4
4
4 1
5 15
5
5 5
,⋯⋯
5
24 24
通上述探究你能猜出: a
a
=_______( a>0) ,并你的.a2 1
答案 :
一、 1. B 2. C 3.A 4.D
二、 1. 13 6 2.12s
三、 1.设:底面正方形铁桶的底面边长为x,
则x2× 10=30× 30×20, x2=30× 30× 2,x= 30 30 ×2=30 2 .
2. a
a
=
a
a
1 a
2 1 a2
验证: a a = a2 a
1 a3
a2 1 a2 a2 1
= a3 a a a3 a a a( a2 1) a
a
a
. a2 1 a2 1 a2
=
a2 1 a2
=
a2
1 1 1。