二次根式除法优秀教案
- 格式:doc
- 大小:69.00 KB
- 文档页数:6
二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
第2课时二次根式的除法教案一、教学内容本节课我们将学习人教版数学八年级上册第17章《二次根式》的第二节:二次根式的除法。
具体内容包括:理解二次根式除法的运算规则,掌握二次根式除法的步骤,能够正确进行二次根式的除法运算,并解决实际问题。
二、教学目标1. 理解并掌握二次根式除法的运算规则。
2. 能够运用二次根式除法解决实际问题,提高运算能力。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:二次根式的除法运算规则。
难点:如何将实际问题转化为二次根式除法运算,以及如何简化复杂的二次根式。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:学生用计算器、练习本、教材。
五、教学过程1. 实践情景引入(5分钟)利用PPT展示一个实际情景:小明和小红分别用相同的速度跑步,小明每秒跑5米,小红每秒跑√20米,问小红跑2秒的路程是小明跑2秒路程的多少倍?2. 例题讲解(15分钟)讲解二次根式除法的运算规则,通过具体例题演示运算步骤。
例题1:计算√20 ÷ √5。
例题2:已知a² = 49,b² = 9,求(a²b²) ÷ (a² b²) 的值。
3. 随堂练习(15分钟)练习题1:计算√45 ÷ √15。
练习题2:计算(3√2) ÷ (√6)。
练习题3:已知x² = 64,y² = 25,求(x²y²) ÷ (x² y²) 的值。
4. 答疑解惑(10分钟)针对学生在练习中遇到的问题进行解答,强化对二次根式除法的理解。
5. 小组讨论(5分钟)让学生分组讨论如何将实际问题转化为二次根式除法运算,以及如何简化复杂的二次根式。
六、板书设计1. 二次根式的除法运算规则2. 例题解答步骤3. 练习题答案及解析七、作业设计1. 作业题目(1)计算√27 ÷ √3。
数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。
本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。
(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。
重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。
二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。
因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。
②本节的难点是化简二次根式的方法与技巧。
难点分析化简二次根式,实际上是二次根式性质的综合运用。
化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。
所以对初学者来说,这一过程容易出现符号和计算出错的问题。
熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。
③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。
因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。
二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
二次根式的除法教案一、教学目标:1、能够掌握二次根式的除法运算方法。
2、能够运用所掌握的知识解决实际问题。
二、教学重难点:1、运用二次根式的特点进行除法运算。
2、解决实际问题时,思路清晰,步骤正确,答案准确。
三、教学准备:1、教师要准备好黑板、彩色粉笔、课件等教具。
2、学生要准备好书写工具、教材等资料。
四、教学过程:1、引入新知识假如小张买了一本书,价钱是3√6元,那么如果将这个钱分成同样多的份送给4个朋友,每个人分到多少钱?教师将这个问题写在黑板上,然后引导学生思考。
2、展示新知识教师讲解如下:解决这个问题,我们需要运用二次根式的除法运算方法。
在二次根式的除法运算中,我们首先需要确定两个二次根式的次数是否相等,如果二次根式的次数相等,我们可以利用化简的方法进行求解。
例如:(√2 + √3)÷ (√2 - √3) = [(√2 + √3)×(√2 + √3)] ÷(√2 - √3)×(√2 + √3)=(√2 + 2√6 + 3)÷(2 - 3)= -(√2 + 2√6 + 3)÷ 1= -√2 - 2√6 - 3。
但是,当二次根式的次数不相等时,我们需要利用有理化分母的方法,将分母有理化为整数或整系数。
例如,对于小张的问题,我们可以进行如下的计算:3√6 ÷ 4 = (3÷4)√6 = 0.75√6。
教师通过让学生进行练习和实战演练的方式,加深学生对于二次根式的除法运算的理解。
3、巩固练习练习1:计算下列问题:(1)、(√7 + √5)÷ 2;(2)、(2√10 + √5)÷(√2 - √3);练习2:一台电视机的宽度为60√3厘米,长度为100√5厘米,求它的对角线的长度。
练习3:一条长方形地板长6√5米,宽4√5米,用同样大小的正方形瓷砖铺地,每块瓷砖长度和宽度均为x√5米,问每块瓷砖的边长是多少米?4、拓展延伸教师可以让学生尝试利用二次根式的除法运算方法进行解决实际问题的练习。
2024年第2课时二次根式的除法教案一、教学内容本节课的教学内容为二次根式的除法。
根据教材第四章第三节的内容,详细包括二次根式的概念、性质及其除法运算的法则,着重讲解如何将二次根式进行除法运算,并掌握化简和计算的方法。
二、教学目标1. 理解二次根式的概念和性质,能够熟练运用二次根式的除法法则进行计算。
2. 培养学生的逻辑思维能力和解决问题的能力,使他们在解决实际问题时能灵活运用二次根式的除法。
3. 通过二次根式的除法教学,提高学生的运算速度和准确性。
三、教学难点与重点教学难点:二次根式的除法法则的运用,特别是含有分母的二次根式的除法运算。
教学重点:理解二次根式的性质,掌握二次根式的除法法则,能熟练进行计算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入(5分钟)通过一个现实生活中的问题,引导学生了解二次根式除法在实际中的应用。
2. 例题讲解(20分钟)讲解教材中的例题,详细解释二次根式的除法法则,包括:(1)同底数二次根式的除法;(2)含分母的二次根式的除法;(3)化简二次根式并进行除法运算。
3. 随堂练习(10分钟)让学生独立完成练习,巩固所学知识,教师进行指导和解答。
4. 解题思路和技巧讲解(15分钟)针对学生在练习中遇到的问题,讲解解题思路和技巧,特别是如何化简二次根式。
5. 小结(5分钟)六、板书设计1. 二次根式的除法2. 二次根式的概念和性质3. 二次根式的除法法则4. 例题解答过程5. 练习题目七、作业设计1. 作业题目:(1)计算 $\sqrt{45} \div \sqrt{5}$;(2)计算 $\frac{2\sqrt{3}}{\sqrt{6}}$;(3)化简并计算 $\frac{3\sqrt{2} + 2\sqrt{3}}{\sqrt{2} \sqrt{3}}$。
2. 答案:(1)3;(2)$\sqrt{2}$;(3)8 5$\sqrt{6}$。
《二次根式的除法》教学设计一、教学目标1、知识与技能目标(1)理解二次根式的除法法则,并能熟练运用法则进行计算。
(2)能将分母中含有二次根式的式子进行分母有理化。
2、过程与方法目标(1)通过探究二次根式的除法法则,培养学生的观察、分析和归纳能力。
(2)在分母有理化的过程中,体会转化的数学思想,提高运算能力。
3、情感态度与价值观目标(1)在学习过程中,培养学生严谨的治学态度和勇于探索的精神。
(2)通过小组合作学习,增强学生的团队合作意识和交流能力。
二、教学重难点1、教学重点(1)二次根式的除法法则。
(2)分母有理化。
2、教学难点分母有理化的方法和技巧。
三、教学方法讲授法、启发式教学法、小组合作探究法四、教学过程1、导入新课通过复习二次根式的乘法法则,引导学生思考二次根式的除法运算应该如何进行,从而引出本节课的主题——二次根式的除法。
例如:计算$\sqrt{12} \times \sqrt{3} =\sqrt{36} = 6$,那么如果是除法运算,如$\sqrt{12} \div \sqrt{3}$又该如何计算呢?2、探索新知(1)提出问题计算:$\frac{\sqrt{4}}{\sqrt{2}}=$?$\frac{\sqrt{16}}{\sqrt{4}}=$?$\frac{\sqrt{25}}{\sqrt{5}}=$?(2)观察分析引导学生观察上述算式的计算结果,思考其中的规律。
(3)得出法则经过观察和讨论,得出二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}(a\geq 0, b > 0)$强调法则成立的条件:被开方数非负,除数不为零。
3、例题讲解例 1:计算(1)$\frac{\sqrt{24}}{\sqrt{3}}$(2)$\frac{\sqrt{50}}{\sqrt{10}}$解:(1)$\frac{\sqrt{24}}{\sqrt{3}}=\sqrt{\frac{24}{3}}=\sqrt{8} = 2\sqrt{2}$(2)$\frac{\sqrt{50}}{\sqrt{10}}=\sqrt{\frac{50}{10}}=\sqrt{5}$例 2:化简(1)$\frac{\sqrt{12}}{\sqrt{27}}$(2)$\frac{3}{\sqrt{5}}$解:(1)$\frac{\sqrt{12}}{\sqrt{27}}=\sqrt{\frac{12}{27}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$(2)$\frac{3}{\sqrt{5}}=\frac{3\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}}=\frac{3\sqrt{5}}{5}$4、小组合作探究给出一些分母中含有二次根式的式子,如$\frac{1}{\sqrt{2}}$,$\frac{\sqrt{3}}{2\sqrt{5}}$等,让学生以小组为单位进行讨论,如何将其分母有理化。
2024年“二次根式的除法”教案一、教学内容本节课选自人教版《数学》八年级下册第十七章《二次根式》第三节“二次根式的除法”。
具体内容包括:理解二次根式除法的概念,掌握二次根式除法的运算规则,运用二次根式除法解决实际问题。
二、教学目标1. 知识目标:使学生理解二次根式除法的概念,掌握二次根式除法的运算规则。
2. 技能目标:培养学生运用二次根式除法解决实际问题的能力。
3. 情感目标:激发学生学习数学的兴趣,培养合作交流的意识。
三、教学难点与重点教学重点:二次根式除法的运算规则。
教学难点:如何将实际问题转化为二次根式除法问题。
四、教具与学具准备教具:黑板、粉笔、多媒体设备学具:练习本、铅笔五、教学过程1. 实践情景引入(1)教师展示一个实际情境:一块长方形的菜地,长是宽的两倍,宽是x米,求菜地的面积。
(2)引导学生列出菜地面积的算式:2x^2。
(3)提问:如何将这个算式化简成最简二次根式?2. 例题讲解(1)教师讲解二次根式除法的概念及运算规则。
(2)举例讲解:化简√18 ÷ √2。
3. 随堂练习(2)学生互相交流讨论,教师巡回指导。
4. 小结5. 课堂小结教师对本节课的内容进行回顾,强调二次根式除法的运算规则。
六、板书设计1. 二次根式的除法2. 内容:(1)概念:二次根式除法的定义(2)运算规则:二次根式除法的运算规则(3)例题:√18 ÷ √2 的化简过程(4)练习:√50 ÷ √5 的化简过程七、作业设计1. 作业题目:化简下列二次根式:(1)√24 ÷ √6(2)√45 ÷ √9(3)√27 ÷ √32. 答案:(1)2(2)5(3)3八、课后反思及拓展延伸1. 反思:本节课学生对二次根式除法的运算规则掌握情况,以及在实际问题中的应用能力。
2. 拓展延伸:研究二次根式的乘法、除法混合运算,以及与分数、整数的混合运算。
重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的选取和指导5. 板书设计的内容和结构6. 作业设计的针对性和答案的准确性7. 课后反思及拓展延伸的方向一、教学难点与重点的确定重点应放在二次根式除法的运算规则上,因为这是解决二次根式除法问题的关键。
《二次根式的除法》教案一、教学内容本节课主要围绕《数学》八年级上册教材第十章“根式”中的第三节“二次根式的除法”进行。
详细内容包括:理解二次根式除法的运算规则,掌握分母有理化方法,并能熟练运用解决实际问题。
二、教学目标1. 理解并掌握二次根式除法的运算规则,能够正确进行二次根式的除法运算。
2. 学会分母有理化的方法,能够将二次根式转化为分母为整数的分数形式。
3. 能够运用所学知识解决实际问题,提高数学运算能力和逻辑思维能力。
三、教学难点与重点教学难点:分母有理化的方法,以及运用除法规则进行二次根式的除法运算。
教学重点:二次根式除法的运算规则及其应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:学生每人一本教材、练习本、铅笔。
五、教学过程1. 实践情景引入(5分钟)利用PPT展示生活中的实际问题,如面积、体积等计算问题,引导学生运用二次根式进行求解。
2. 知识讲解(15分钟)(1)回顾二次根式的定义及性质。
(2)讲解二次根式的除法运算规则,并进行例题演示。
3. 例题讲解(15分钟)选取具有代表性的例题,进行详细讲解,让学生跟随教师一起分析解题思路。
4. 随堂练习(10分钟)学生独立完成练习题,巩固所学知识。
5. 答疑解惑(5分钟)针对学生遇到的问题进行解答,强化对知识点的理解。
6. 小结与拓展(5分钟)六、板书设计1. 二次根式的除法运算规则。
2. 分母有理化的方法。
3. 例题及解题步骤。
七、作业设计1. 作业题目:(1)计算下列各式的值:① √18 ÷ √2② √27 ÷ √3③ √20 ÷ √5(2)运用分母有理化方法,将下列二次根式转化为分母为整数的分数形式:① 1/√2② 2/√3③ 3/√52. 答案:(1)① 3,② 3,③ 2(2)① √2/2,② 2√3/3,③ 3√5/5八、课后反思及拓展延伸1. 反思:关注学生在课堂上的学习效果,针对不足之处进行改进。
二次根式教案四篇二次根式教案篇11、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
2、过程与方法:进一步体会分类讨论的数学思想。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
1、重点:准确理解二次根式的概念,并能进行简单的计算。
2、难点:准确理解二次根式的双重非负性。
课本第2— 3页一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。
二、课堂教学(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。
组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。
教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
(二)集体讲授阶段。
(15分钟左右)1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的.普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案篇2一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的'根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
第2课时 二次根式的除法1.掌握二次根式的除法法则和商的算术平方根的性质,会运用其进行相关运算;(重点) 2.能综合运用已学性质进行二次根式的化简与运算.(难点) 一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法【类型一】 二次根式的除法运算计算: (1)0.760.19;(2)-123÷554; (3)6a 2b 2ab;(4)5÷⎝⎛⎭⎫-5145. 解析:本题主要运用二次根式的除法法则来进行计算,若被开方数是分数,则被开方数相除时,可先用除以一个数等于乘这个数的倒数的方法进行计算,再进行约分.解:(1)0.760.19=0.760.19=4=2; (2)-123÷554=-123÷554=-53×545=-18=-32; (3)6a 2b 2ab=6a 2b2ab=3a ; (4)5÷⎝⎛⎭⎫-5145=-5÷595=-5×15×59=-15×53=-13.方法总结:利用二次根式的除法法则进行计算时,可以用“除以一个不为零的数等于乘这个数的倒数”进行约分化简.【类型二】 二次根式的乘除混合运算 计算:(1)945÷3212×32223; (2)a 2·ab ·bb a÷9b 2a. 解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183;(2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数.探究点二:商的算术平方根的性质 【类型一】 利用商的算术平方根的性质确定字母的取值范围若a 2-a =a 2-a,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎪⎨⎪⎧a ≥0,2-a >0,解得0≤a<2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式化简:(1)179;(2)3c34a4b 2(a>0,b>0,c>0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43;(2)3c34a4b2=3c34a4b2=c2a2b3c.方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.探究点三:最简二次根式在下列各式中,哪些是最简二次根式?哪些不是?并说明理由.(1)45;(2)13;(3)52;(4)0.5;(5)145.解析:根据满足最简二次根式的两个条件判断即可.解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式;(3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式;(5)145=95=355,被开方数中含有分母,因此它不是最简二次根式.方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.探究点四:二次根式除法的综合运用座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T=2πlg,其中T表示周期(单位:秒),l表示摆长(单位:米),g=9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T=2π0.59.8≈1.42,60T=601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.三、板书设计1.二次根式的除法运算2.商的算术平方根3.最简二次根式被开方数不含分母;被开方数中不含能开得尽方的因数或因式.在教学中应注重积和商的互相转换,让学生通过具体实例再结合积的算术平方根的性质,对比、归纳得到商的算术平方根的性质.在此过程中应给予适当的指导,可提出问题让学生有一定的探索方向.在设计课堂教学内容时,以提问的方式引出本节课要解决的问题,让学生自主探究,在探究过程中观察知识产生发展的全过程,从而让学生的学习情感和学习品质得到升华,学生的创新精神得到发展.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE =PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE 为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD 的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB=90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB 是直角三角形.在Rt△ADB中,∵AD=12,AB=13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE即为走私船所走的路程.由题意可知,△ABE和△ABC均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN与AC相交于E,则∠BEC =90°.∵AB2+BC2=52+122=132=AC2,∴△ABC为直角三角形,且∠ABC=90°.∵MN⊥CE,∴走私艇C进入我国领海的最短距离是CE.由S△ABC=12AB·BC=12 AC·BE,得BE=6013海里.由CE2+BE2=122,得CE=14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分.答:走私艇C最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。
二次根式的除法数学教案
标题:二次根式的除法
一、教学目标
1. 学生能够理解并掌握二次根式的除法法则。
2. 学生能熟练运用二次根式的除法法则解决实际问题。
3. 培养学生的逻辑思维能力和计算能力。
二、教学内容与过程
1. 引入新课:
通过复习以前学过的二次根式乘法法则引入新课,让学生思考能否用类似的方法进行二次根式的除法。
2. 新知探究:
(1) 分析讨论二次根式的除法法则。
例如:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$(其中$a\geqslant 0,b>0$)
(2) 通过具体的例子来解释和证明这个法则。
3. 巩固练习:
设计一系列习题,包括直接应用法则进行计算,以及将法则应用于实际问题中,以帮助学生理解和掌握二次根式的除法法则。
4. 小结与反思:
回顾本节课所学的内容,总结二次根式的除法法则,并引导学生自我评价在学习过程中的收获和困难。
三、作业布置
设计一些习题,包括基本的二次根式除法运算和应用题,让学生在家中进行自我检查和巩固。
四、教学评估
通过课堂观察,作业反馈和小测验等方式,对学生的学习效果进行评估。
八年级下册数学教案《二次根式的除法》学情分析本节内容在二次根式乘法性质的基础上学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例,再结合乘法的性质,类比、归纳,得到二次根式的除法性质。
教学目的1、了解二次根式的除法法则2、会运用除法法则及商的算术平方根进行简单运算。
3、能将二次根式化为最简二次根式。
教学重难点1、掌握二次根式的除法法则。
2、会运用法则及商的算术平方根进行计算,并将结果化为最简二次根式。
教学方法讲授法、讨论法、练习法教学过程一、复习引入上节课我们学习了二次根式的乘法运算,得到了二次根式的乘法运算法则及性质,那么两个二次根式能否进行除法运算呢?是否具有相应的法则和性质呢?计算下列各式,观察计算结果,你能发现什么规律?(1)√4/√9 = 2/3,√(4/9) = 2/3(2)√16/√25 = 4/5,√(16/25) = 4/5(3)√36/√49 = 6/7,√(36/49) = 6/7二、学习新知1、二次根式的除法法则一般地,二次根式的除法法则是√a/√b = √(a/b)(a≥0,b>0)拓展:当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得m√a / n√b = m/n×√(a/b)(a≥0,b>0,n≠0)2、计算。
(1)√24/√3 = √(24/3)= √8= 2√2(2)√3/2 ÷√1/8 = √(3/2 ÷ 1/8)= √3/2 × 8= √12= 2√3当除式是分数或分式时,先要将除式转化为乘式,再进行计算。
3、商的算术平方根的性质我们知道,把二次根式的乘法法则反过来,就得到积的算术平方根的性质,类似地,把二次根式的除法法则反过来,就得到二次根式的商的算术平方根的性质:√a/b = √a/√b(a≥0,b>0)可以运用商的算术平方根完成二次根式的解题和化简。
4、化简:(1)√3/100 = √3/√100= √3/10(2)√75/27 = √75/√27= √(25×3)/ √(9×3)= √25 ×√3 / √9 ×√3= 5√3 / 3√3= 5/35、最简二次根式(1)分数的基本性质分数的分子和分母都乘同一个非零整式,所得分数与原分数相等,即f/g= (f·h) / (g·h)(h≠0)(2)前面我们学习了二次根式的除法法则,你会去掉√2 /√3这样的式子的分母根号吗?√2 /√3 =(√2×√3) /(√3×√3)= √6/3(3)分母有理化把分母中的根号化去,使得分母变成有理数的这个过程,叫做分母有理化。
第2课时二次根式的除法教案一、教学内容本节课我们将学习人教版八年级数学上册第12章《根式》的第二节:二次根式的除法。
具体内容包括理解二次根式除法的法则,掌握如何将二次根式进行相除,并能解决实际问题。
二、教学目标1. 理解并掌握二次根式除法的计算法则。
2. 能够正确进行二次根式的除法运算,并简化结果。
3. 能够运用二次根式除法解决简单的实际问题。
三、教学难点与重点重点:二次根式除法的计算法则及运算步骤。
难点:如何将二次根式化简,以及在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:学生用计算器、练习本、二次根式除法例题资料。
五、教学过程1. 实践情景引入(5分钟):通过一个实际情景,例如土地面积的换算问题,引发学生对二次根式除法的兴趣。
2. 例题讲解(15分钟):讲解二次根式除法的计算法则,并举例说明,如: \( \frac{\sqrt{45}}{\sqrt{5}} = \sqrt{\frac{45}{5}} = \sqrt{9} = 3 \)3. 随堂练习(10分钟):学生进行随堂练习,教师巡回指导,解答学生的疑问。
强调二次根式除法的注意事项,如分母不能为零,根号内不能有分数等。
5. 应用拓展(10分钟):引导学生运用二次根式除法解决更复杂的问题,如几何图形面积的计算。
六、板书设计1. 二次根式除法的计算法则。
2. 例题及解答步骤。
3. 练习题及答案。
七、作业设计1. 作业题目:\( (1) \frac{\sqrt{72}}{\sqrt{8}} \)\( (2) \frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{6}} \)\( (3) \text{应用题:一块长方形土地的长是} 5\sqrt{3} \text{米,宽是} \sqrt{12} \text{米,求这块土地的面积。
} \)2. 答案:\( (1) 3\sqrt{2} \)\( (2) \sqrt{3} + \frac{3}{\sqrt{6}} \)\( (3) 15 \text{平方米} \)八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生是否真正掌握了二次根式的除法,以及在实际问题中的应用。
二次根式的除法教案教案:二次根式的除法一、教学目标:1.了解二次根式的定义和性质;2.学会二次根式的加法与减法;3.学会二次根式的除法。
二、教学重点:1.二次根式的定义和性质;2.二次根式的除法。
三、教学难点:1.二次根式的除法。
四、教学方法:1.探究法;2.归纳法;3.演示法。
五、教学过程:Step 1 引入新知识1.提出问题:我们知道如何将两个分数相除吗?那么,如何将两个二次根式相除呢?2.导入新课题:我们今天学习的是二次根式的除法,通过探究,我们一起来学习二次根式的除法吧。
Step 2 探究二次根式的除法的基本概念及操作规则1.通过例子引导学生思考:如果我们要计算√a / √b,其中a和b都是正数,那么我们需要怎样操作呢?2.让学生自主探索:a) 选择一些正数a和b,计算它们的二次根式;b) 计算这些二次根式的商,并观察其特点;c) 归纳总结观察到的规律。
Step 3 归纳整理并总结操作规则1.让学生将观察到的规律进行总结,形成“二次根式的除法”的操作规则;2.板书操作规则,让学生记下。
Step 4 练习二次根式的除法1.在黑板上出示一些二次根式的除法题目,让学生完成计算;2.让学生与同学互相交流,对答案进行讨论。
Step 5 深化练习1.出示一些综合性的题目,让学生运用所学的二次根式的除法解决问题;2.让学生完成练习题并相互讨论。
六、教学延伸:1.拓展练习:a)出示一些挑战性的题目,让学生进行拓展性的思考与解决;b)让学生分析并总结解决这类题目的方法和技巧。
2.扩展应用:让学生在实际生活中找到二次根式的应用场景,并进行解决问题的实践。
七、教学反思:通过探究法和归纳法,学生能够主动参与到教学中来,积极思考,形成自己的理解。
通过练习和讨论,学生能够逐步掌握二次根式的除法方法和技巧。
注重培养学生的动手能力和合作精神,为学生提供一个积极、合作和探索的学习环境。