二次根式的乘除教学设计
- 格式:doc
- 大小:246.50 KB
- 文档页数:6
《二次根式的乘除法》教案教学目的:1、使学生掌握二次根式的乘除法法则.2、会应用二次根式的乘除法法则进行简单的二次根式的乘除法运算.3、能正确地进行简单的二次根式的乘除法混合运算.教学重点:应用二次根式的乘除法法则进行简单的二次根式的乘除法运算.教学难点:正确地进行简单的二次根式的乘除法混合运算.教学过程:一、复习复习旧知:什么是二次根式?已学过二次根式的哪些性质?二、探索新知1、分别用式子表示二次根式积的算术平方根的性质及二次根式的乘法法则.二者的关系是什么? 答:二次根式积的算术平方根,等于积中各因式的算术平方根的积.即:()0,0≥≥⋅=b a b a ab 二次根式的乘法法则是:()0,0≥≥=⋅b a ab b a 这两个式子是互逆的关系. 概括:)0,0(≥≥=⋅b a ab b a .得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变.例1、计算:(1)73⨯; (2)4831⨯.例2、化简下列二次根式:(1)48; (2)325m ; (3)22817-.例3、计算:(1)615⨯; (2)355202⨯-.2、二次根式商的算术平方根的性质是什么?并用式子表示.答:二次根式商的算术平方根,等于被除式的算术平方根除以式的算术平方根,即: b a b a =()0,0>≥b a .把式子b a b a =()0,0>≥b a 反过来,得到ba b a=()0,0>≥b a ,这是二次根式的除法法则.运用这个法则可以进行二次根式的除法运算.例4、计算:(1)672;(2)61211÷. 解:(1)672=3232321267222=⨯=⨯==. (2)由学生口述,并说明各步运算依据.3、什么是最简二次根式.满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.例5、把下列根式化为最简二次根式:(1)18; (2)32; (3)()043<a b a . 4、分母有理化把分母中的根号划去,叫做分母有理化.例6、把下列各式的分母有理化:(1);53 (2);b a a + (3).1852三、习题演示练习1:计算(1)354-(2)531513÷ 2:计算:(1)4540(2)345653n m n m ÷ 解:(1)4540=32298984540=== (2)345653n m n m ÷=mn n m n m n m n m n m n m 5353535353222234563456====指出:在进行二次根式的除法运算时,有时要把除法法则与商的算术平方根的性质结合应用,如上面例2的第(1)题.在(2)中把两个二次根式中的根号外面的数与被除数开方数分别相除,然后取其积.练习2:(1)188146÷;(2)⎪⎭⎫ ⎝⎛-÷233212y x xy ; (3)y x y x x -÷-324. 3:计算(1)21223222330÷⨯; (2)⎪⎭⎫ ⎝⎛-⨯÷b a a b b a ab b 3252362. 分析:二次根式乘除的混合运算与有理数的乘除混合运算一样,按先后顺序进行.解:(1)原式=⎪⎪⎭⎫ ⎝⎛÷⨯⎪⎭⎫ ⎝⎛÷=÷⨯258102232122383023=258102123÷⨯⨯ =2324433281043=⨯=⨯⨯ (2)原式=⎪⎭⎫ ⎝⎛-⨯÷⋅=⎪⎭⎫ ⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛÷b a a b ab a b b b a a b ab b a b 35235223622362 =ab ab ab b a a b b a a b b a b a ab a b 2222333225535-=⋅-=-=⨯⨯⎪⎭⎫ ⎝⎛-⨯. 练习3:计算(1)21223151437⨯÷-(2)()a a b ab 23233-⨯⎪⎪⎭⎫ ⎝⎛-÷. 四、小结1、二次根式的乘法法则)0,0(≥≥=⋅b a ab b a .二次根式乘法法则是由积的算术平方根的性质()0,0≥≥⋅=b a b a ab 得来的.它们所表示的式子是相反方向.2、二次根式的除法法则ba b a=()0,0>≥b a 是把b a 看作b a 1⋅,这样就可以把二次根式的除法转化为二次根式的乘法运算.二次根式除法法则是由商的算术平方根的性质b a b a =()0,0>≥b a 得来的.它们所表示的式子是相反方向. 2、在进行二次根式和乘、除混合运算时,如果没有括号,应按从左到右的先后顺序进行运算,运算结果要注意化简,使被开方数中每个因式(或因数)的指数都小于是2.。
二次根式的乘除教学设计(精选7篇)作为一名教师,往往需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编精心整理的二次根式的乘除教学设计,欢迎阅读与收藏。
二次根式的乘除教学设计篇1一、引入新课:上节数学课我们学习了二次根式的乘法计算,那么该怎样进行二次根式的除法运算呢?本节课我们一起学习。
二、展示目标,自主学习:自学指导:认真阅读课本第8页——10页内容,完成下列任务:1、先自主完成8页“探究”,再和同伴交流,你们得到的结论是:。
尝试用文字语言表述这个法则。
2、认真看例4、例5、例6和例7的每一步计算和化简,有疑问随即和同伴交流或向老师请教;3、最简二次根式满足的两个条件是:①( )② ( )4、仿照例题格式完成10页练习并和同伴互相找毛病。
三、检测反馈1、师生共同解决“自学指导”中的问题。
2、找同学演板10页练习1、2、3四、课堂小结:本节课你有哪些收获?(1)二次根式的除法法则是什么?请写在下面。
(2)在进行二次根式的除法计算和化简时你有觉得应该注意些什么?请告诉大家。
五、布置作业:作业:课本第10页习题16.2 第2题;第3题的(3)、(4)小题二次根式的乘除教学设计篇2教学目标1、使学生理解最简二次根式的概念;2、掌握把二次根式化为最简二次根式的方法。
教学重点和难点重点:化二次根式为最简二次根式的方法。
难点:最简二次根式概念的理解。
一、导入新课计算:我们再看下面的问题:简,得到从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。
二、新课答:1、被开方数的因数是整数或整式;2、被开方数中不含能开得尽方的因数或因式。
满足上面两个条件的二次根式叫做最简二次根式。
例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?解(1)不是最简二次根式。
因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。
二次根式乘除教案教案一:二次根式之乘法教学目标:1.了解二次根式的定义和性质;2.掌握二次根式的乘法运算法则;3.能够正确应用乘法法则计算二次根式之乘积。
教学重点:1.二次根式的乘法的计算方法;2.运用乘法法则计算二次根式之乘积。
教学难点:在计算过程中遇到含有相同根指数的二次根式如何简化。
教学步骤:Step 1 引入新知识(5分钟)教师引导学生回顾和复习二次根式的定义和性质,并提出乘法的问题,如何计算两个二次根式的乘积。
Step 2 概念解释(10分钟)教师通过例题的形式解释二次根式的乘法法则,并给出一些常见的二次根式乘法的计算方法。
Step 3 例题演示(15分钟)教师用具体的例题演示二次根式乘法的计算过程,引导学生了解每一步的操作及其原理。
在解题的过程中,特别关注含有相同根指数的二次根式如何简化。
Step 4 练习(20分钟)教师组织学生进行练习,巩固所学的二次根式乘法运算法则。
Step 5 总结归纳(5分钟)教师对本节课所学的内容进行总结和归纳,帮助学生理清思路,加深对二次根式乘法运算法则的理解。
同时,提醒学生在做题时注意简化二次根式和合并同类项。
Step 6 作业布置(5分钟)教师布置相应的习题作为课后作业,要求学生独立完成并检查答案。
教案二:二次根式之除法教学目标:1.了解二次根式的定义和性质;2.掌握二次根式的除法运算法则;3.能够正确应用除法法则计算二次根式之商。
教学重点:1.二次根式的除法的计算方法;2.运用除法法则计算二次根式之商。
教学难点:在计算过程中遇到含有相同根指数的二次根式如何简化。
教学步骤:Step 1 引入新知识(5分钟)教师引导学生回顾和复习二次根式的定义和性质,并提出除法的问题,如何计算两个二次根式的商。
Step 2 概念解释(10分钟)教师通过例题的形式解释二次根式的除法法则,并给出一些常见的二次根式除法的计算方法。
Step 3 例题演示(15分钟)教师用具体的例题演示二次根式除法的计算过程,引导学生了解每一步的操作及其原理。
二次根式乘除教学设计范文(精选3篇)作为一名教师,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
教学设计应该怎么写才好呢?下面是小编为大家整理的二次根式乘除教学设计范文(精选3篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
二次根式乘除教学设计1一、内容和内容解析1、内容二次根式的除法法则及其逆用,最简二次根式的概念。
2、内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。
基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。
二、目标和目标解析1、教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念、2、目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。
(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。
三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行、二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算、教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。
初二下册数学二次根式乘除人教八下数学《二次根式的乘除(1)》名师教学设计2个教学设计一:教学目标:1. 理解二次根式的乘法和除法的性质和规律;2. 掌握二次根式乘法和除法的基本方法,能够进行正确的计算;3. 能够应用二次根式的乘法和除法解决实际问题。
教学重点:1. 掌握二次根式乘法和除法的基本方法;2. 理解二次根式乘法和除法的性质和规律。
教学难点:1. 运用二次根式乘法和除法解决实际问题;2. 理解二次根式乘法和除法的性质和规律。
教学准备:1. 教师准备教材《人教八下数学》,课程PPT;2. 教师准备多媒体设备;3. 准备习题和练习题。
教学过程:一、导入(5分钟)1. 使用课前预习题目,让学生回顾上一节课的内容;2. 引入课题,介绍二次根式的乘法和除法的概念和意义。
二、讲解(20分钟)1. 根据教材内容,讲解二次根式乘法的方法和规律;2. 指导学生进行相关的习题练习,加深学生的理解;3. 讲解二次根式除法的方法和规律;4. 指导学生进行相关的习题练习,加深学生的理解。
三、练习(15分钟)1. 教师出示多个练习题,要求学生进行计算;2. 学生在黑板上依次写出解题步骤和答案;3. 教师就每一个练习题给出评价和指导。
四、拓展(10分钟)1. 通过实例问题,让学生应用二次根式的乘法和除法解决实际问题;2. 引导学生思考和解决问题的方法和思路;3. 指导学生进行相关的练习题,加深学生的应用能力。
五、总结(5分钟)1. 教师总结本节课的重点和难点,并做相关解释;2. 学生进行相关问题的提问和回答;3. 教师对学生的表现进行点评和鼓励。
六、作业布置(5分钟)1. 教师布置相关的作业;2. 提醒学生复习本节课的内容;3. 鼓励学生积极参加学习中的问题讨论和解答。
教学设计二:教学目标:1. 理解二次根式的乘法和除法的性质和规律;2. 能够正确应用二次根式的乘除法进行计算;3. 能够通过计算解决与二次根式相关的实际问题。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。