复变函数 复数项级数和序列
- 格式:pdf
- 大小:5.28 MB
- 文档页数:47
第四章复变函数级数第四章复变函数级数(42)⼀、内容摘要1.复数列的极限:设有复数列{}n z ,若存在复数z ,对于任意的0>ε,总有数N >0,使数列序数N n >时总有ε<-z z n ,则称复数z 为数列{}n z 的极限,或者说数列{}n z 收敛于z ,记作:lim n n z z →∞= 由于n n n iv u z +=, iv u z +=, 当lim n n z z →∞=式成⽴时, 等价于lim ,n n u u →∞=lim n n v v→∞=1nn z ∞=∑收敛的充要条件是1nn u ∞=∑和1nn v ∞=∑都收敛。
2.复数级数(定义):设有复数项级数 +++=∑∞=k k n z z z z 211若其前n 项和n n z z z S ++=21构成的数列{}n S 收敛,则称级数1n k z ∞=∑收敛,⽽数列{}n S 的极限S 叫做级数1n k z ∞=∑的和.否则称级数1n k z ∞=∑发散。
由于∑∑==+=n k kn v i uS 11,所以11lim lim limnk n k n n n k n k u u S S u iv v v →∞=→∞→∞=?=??==+=??∑∑;绝对收敛:若⼀个级数的模级数∑∞=1k k z 收敛,则称级数∑∞=1k k z 是绝对收敛;若收敛级数的模级数不收敛,则称条件收敛。
3.设复变函数)(z f k ( ,2,1,0=k )区域G 内都有定义, 则定义复变函数项级数:∑∞=++++=010)()()()(k k k z f z f z f z f ,其中前n 项和:∑==nk k n z f S 0)(。
若对于G 内某点0z ,极限lim n n s S →∞=存在,则称复变函数项级数在点0z 收敛,s 叫做级数的和.若级数在区域G 内处处收敛,其和必是⼀个复函数:∑∞==)()(k k z f z s .则()s z )称为级数0()k k f z ∞当n N >时,1|()|n pk k n f z ε+=+<∑(p 为任意正整数)则称级数0()n n f z ∞=∑在B 内(或曲线L 上)⼀致收敛。
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+” 5)指数表示:i z z e θ=,其中arg z θ=. (二) 复数的运算1。
加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+± 2。
乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3。
乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=. 2)若(cos sin )i z z i z e θθθ=+=,则122cos sin (0,1,21)nk k z i k n n n θπθπ++⎛⎫=+=- ⎪⎝⎭(有n 个相异的值)(三)复变函数1.复变函数:()w f z =,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个点集G 的映射.2.复初等函数指数函数:()cos sin z x e e y i y =+,在z 平面处处可导,处处解析;且()z z e e '=.注:z e 是以2i π为周期的周期函数.(注意与实函数不同)对数函数: ln (arg 2)Lnz z i z k π=++(0,1,2)k =±±(多值函数);主值:ln ln arg z z i z =+。
第四章 级 数 第一节 级数和序列的基本性质2、复变函数项级数和复变函数序列:设,...)2,1)}(({=n z f n 在复平面点集E 上有定义,那么:...)(...)()(21++++z f z f z f n是定义在点集E 上的复变函数项级数,记为∑+∞=1)(n n z f ,或∑)(z f n 。
设函数f (z )在E 上有定义,如果在E 上每一点z ,级数∑)(z f n 都收敛于f (z ),那么我们说此级数在E 上收敛(于f (z )),或者此级数在E 上有和函数f (z ),记作),()(1z f z fn n =∑+∞=设),...(),...,(),(21z f z f z f n是E 上的复变函数列,记作+∞=1)}({n n z f 或)}({z f n 。
设函数)(z ϕ在E 上有定义,如果在E 上每一点z ,序列)}({z f n 都收敛(于)(z ϕ),那么我们说此序列在E 上收敛(于)(z ϕ),或者此序列在E 上有极限函数)(z ϕ,记作),()(lim z z f n n ϕ=+∞→注解1、复变函数项级数∑)(z f n 收敛于f (z )的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|1ε<-∑=z f z f nk k注解2、复变函数序列)}({z f n 收敛于)(z ϕ的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|εϕ<-z z f n如果任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n ∈>,时,有 .|)()(|1ε<-∑=z f z f nk k或 .|)()(|εϕ<-z z f n那么我们说级数∑)(z f n 或序列)}({z f n 在E 上一致收敛(于f (z )或)(z ϕ)。
复数列级数敛散性小结0000000lim 1lim lim lim 2lim 0lim 0lim 0lim 0)n n n n n n n n n n n n n n n n n n n n n n n n x x z z y y z z z z z z z z z →∞→∞→∞→∞→∞→∞∞∞→∞→∞==∞∞==⎧=⎧⎪⎪=⇔⎨=⎪⎪⎪⎩⎨=⇔=⎪⎪⎪⎩≠⇒=⇔∑∑∑∑)1、复数列极限:),(适合于实部和虚部不容易求得的复数列极限)复数列1)若,则必发散,(若收敛2、复数列级数:2)复数列级数收敛实数列级数0000n n n n n n n n x y z z ∞∞==∞∞==⎧⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⇒⎪⎪⎪⎪⎪⎪⎩⎩∑∑∑∑收敛和收敛3)若级数(正项级数)收敛绝对收敛(适合于实部和虚部不容易求得的复数列级数)0100001,11111lim ,2134n n n n n n n n n n n n n n n n n n z z z z C R C C z R C z R C z C z λλλλ∞=+∞→∞=∞=∞=∞=⎧<⎪-⎨⎪≥⎩⎧=⎪⎪⎨⎪=⎪⎩∑∑∑∑∑、发散,1)比值法:=则、收敛半径2)根值法:=则、收敛区域:在半径为在圆域内绝对收敛,在圆外发散,在圆周上可能收敛、可能发散、可能有些点收敛有些点发散、的和函数:求收敛域(收敛半径)、幂级数000()000(21)0()2()()!1(1),11(2),!52)(3)sin (1),(21)!(nn n n n n n n n nz n n n n z f z z z R f z C z f z C n z z z z e z n z z z n ∞=∞=∞=∞=+∞=−−−−−−−→⎧⎪-<⎪⎪⎨⎪⎪=⎪⎩=<-=<+∞=-<+∞+∑∑∑∑∑逐项微分、逐项积分在收敛域内求和函数(1)在圆域内解析1)泰勒级数定理()可展开为幂,且唯一(3)、泰勒级数直接展开法201024)cos (1),(2)!3)()2()1()2(6n n n n n n n z z z n f z R z z R f z C z f C i ζπζ∞=∞=-∞⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪=-<+∞⎪⎪⎩⎪−−−−−−−−−−−−→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩<-<=∑∑逐项微分、逐项积分、求导、求积分等方法间接展开法上面展开式(1)在圆环域内解析1)泰勒级数定理()可展开为幂,且唯一(3)、洛朗级数011020210,1,10110000202)2)113),11n C n n z z R R z z R z z R n n d z z z R z z R z z R ζ+-∞∞<-<<<-==⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪-⎩⎪⎪⎨⎪⎛⎫⎛⎫-⎪−−−−−−−−−→== ⎪ ⎪⎪-⎝⎭⎝⎭--⎪-⎪⎪⎪⎪⎪⎩⎩⎰∑∑直接展开法间接展开法或⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪。
复变函数知识点一、复数的基本概念。
1. 复数的定义。
- 设x,y∈ R,称z = x+iy为复数,其中i为虚数单位,满足i^2=- 1。
x称为复数z的实部,记作x = Re(z);y称为复数z的虚部,记作y = Im(z)。
2. 复数的相等。
- 两个复数z_1=x_1+iy_1和z_2=x_2+iy_2相等,当且仅当x_1=x_2且y_1=y_2。
3. 复数的共轭。
- 对于复数z = x + iy,其共轭复数¯z=x-iy。
共轭复数具有性质:z¯z=x^2+y^2,Re(z)=frac{z + ¯z}{2},Im(z)=frac{z-¯z}{2i}等。
二、复数的四则运算。
1. 加法与减法。
- 设z_1=x_1+iy_1,z_2=x_2+iy_2,则z_1± z_2=(x_1± x_2)+i(y_1± y_2)。
2. 乘法。
- z_1z_2=(x_1+iy_1)(x_2+iy_2)=x_1x_2-y_1y_2+i(x_1y_2+x_2y_1)。
3. 除法。
- frac{z_1}{z_2}=frac{x_1+iy_1}{x_2+iy_2}=frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}=frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+ifrac{x_2y_1-x_1y_2}{x_2^2+y_2^2}(z_2≠0)。
三、复数的几何表示。
1. 复平面。
- 复数z = x+iy可以用复平面上的点(x,y)来表示,其中x轴称为实轴,y轴称为虚轴。
2. 复数的模与辐角。
- 复数z = x + iy的模| z|=√(x^2)+y^{2},它表示复数z在复平面上对应的点到原点的距离。
- 复数z≠0的辐角θ满足z=| z|(cosθ + isinθ),辐角不唯一,Arg(z)=θ + 2kπ,k∈ Z,其中θ∈(-π,π]称为z的主辐角,记作θ = arg(z)。