chapter3复变函数的幂级数展开
- 格式:ppt
- 大小:1.24 MB
- 文档页数:61
第三章 幂级数展开ξ3.1 复数项的级数一.复数的无穷级数可表示为:121kk n k ww w w w ∞==++⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅+∑ (1)其中:k k w u iv =+前n 项和为:11nn k k n k s w w w w w ===++⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+∑=11nnkkk k ui v ==+∑∑当n →∞时级数:n s →级数:1kn w∞=∑故111n kkk k k k w u i v ∞∞====+∑∑∑一个复数项级数可分解为实部项级数可虚部项级数两个级数的组合收敛问题是线性讨论级数的一个重要方面,而复数项级数的收敛问题可以归结为两个实数项级数(实部和虚部)的收敛 1. 柯西收敛判据:一个级数还可写为:11kn kk k n ws w∞∞=≠+=+∑∑ (4)其中n s 是钱n 项和1kk n w∞≠∑为余项判据:任何一个小正数ξ>0 若能找到一个N 使得n>N 时1n pkk n wξ+=+<∑则称1kn w∞=∑收敛,其中p 为任意整数 2. 绝对收敛若11kk k w∞∞===∑∑是收敛的,则1kk w∞=∑绝对收敛两个敛的级数相乘后所得的级数耶是绝对收敛的,其和等于相乘级数和的乘积二.复变项级数(复变函数项级数) 1.函数项级数一般表示为:121()()()()kkk w z w z w z w z ∞==++⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅∑ (5)函数项级数的收敛问题得涉及到z 的取值域,若z 在B 上取值是(5)收敛,则称1()kk w z ∞=∑在B 上收敛。
B 称为1()kk w z ∞=∑的收敛域函数项级数也可表示为:111()nkkkk k k n w z ww∞∞===+==∑∑∑ (6)2. 函数项级数的收敛 如在B 上,对于个点z任意给0ξ>,若存在N 使得n>N 时有1n pkk n wξ+=+<∑则称级数1()nkk w z =∑在B 上一致收敛3.收敛级数性质(1)在B 上一致收敛的函数项级数的每一项都是B 上的连续函数 (2)在B 上一致收敛的函数项级数的每一项都可积分⇒逐项积分 (3) 若有()k k w z m ≤,而1kk m ∞=∑是收敛的,则()kw z ∑绝对且一致收敛ξ3.2 幂级数最典型也最常见的级数——即级数的各项都是幂函数2001020()()()k k k a z z a a z z a z z ∞=-=+-+-+⋅⋅⋅⋅⋅⋅∑ (1) 其中0z 、0a 、1a 、2a ⋅⋅⋅⋅⋅⋅⋅都是复常数,这一的级数叫做以0z 为中心展开的幂级数 一.级数收敛判别法1. 比值判别法(达朗贝尔判别法): 若:110100lim lim1k k k kk k kka z z a z z a a z z +++→∞→∞-=-<- (3)则(2)正项级数收敛,亦即级数(1)绝对收敛 2. 根值判别法若:1k < (4)则级数(2)收敛,亦即级数(1)绝对收敛3. 收敛域和收敛半径函数级数的收敛问题(从根本上)具体要涉及的是收敛u 的问题即,z 在什么样的范围内取值级数是收敛的,收敛判别法本身给出了z 的取值范围: 由判别法“1”:01l i m kk k a z z a →∞+-< (5)则 1limkk k a R a →∞+= (6)为级数(1)的收敛半径 只要满足0z z R -< 的所有点其级数(1)都收敛则以0z 为中心R 为半径的区域是(1)的收敛区域,对应圆称(1)的收敛圆。
第三章 幂级数展开3-1 3-2 3-3 幂级数一、复数项级数∑∞=1n n w, n n n iv u w +=二、幂级数()∑∞=-10n n n z z a 收敛半径:1/lim +∞→=n n n a a R 三、泰勒级数()()()()n n n z z z f n z f 000!1-=∑∞=3-4 解析延拓一、解析延拓的含意解析延拓就是通过函数的替换来扩大解析函数的定义域。
替换函数在原定义域上与替换前的函数相等。
二、解析延拓的唯一性无论用何种方法进行解析延拓,所得到的替换函数都完全等同。
3-5 罗朗级数一、罗朗级数若()z f 在102R Z Z R <-<内单值解析,则对该区域上任一点可展开为()()()()n n n n n n n n n z z a z z a z z a z f 00010-+-=-=∑∑∑∞=--∞=∞-∞= 罗朗级数主要部分 解析部分()()ξξξπd z f i a C n n ⎰+-=110 21二、关于罗朗级的说明● 0z 是级数的奇点,但不一定是()z f 的奇点。
● ()()!/0n z f a n n ≠● 若仅有环心是()z f 的奇点,则内园半径可任意小。
● 罗朗级数具有唯一性。
三、例例1 将()z z f sin =,∞<z ,展开为罗朗级数⎪⎭⎫ ⎝⎛+-+-= 753!71!51!31x x x x s i x 解 +-+-=753!71!51!31s i n z z z z z 例2 在∞<<z 1的环域上将函数()()1/12-=z z f 展开为罗朗级数。
()()1111--=-=x x x f 1≠x ()10=f()()21--='x x f ()10='f()()312--=''x x f ()20=''f()()41!3--='''x x f ()!30='''f()()()()11!+--=n n x n x f ()()!0n f n =()∑∞==++++++=-03211/1n n n x x x x x x ()()()∑∞=-=+-++-+-=+0321111/1n n nn n x x x x x x 解 nn z z z z z ∑∞=⎪⎭⎫ ⎝⎛=-=-02222211111111 ++++=86421111zz z z例3 在10=z 的邻域上将函数()()1/12-=z z f 展开为罗朗级数。
关于复变函数的幂级数展开与解析延拓复变函数是数学中的重要概念,它在研究物理、工程、经济等领域的问题时具有广泛的应用。
其中,幂级数展开和解析延拓是复变函数研究中的两个重要方法和技巧。
本文将从幂级数展开的原理和方法、解析延拓的概念和应用等方面进行详细介绍。
首先,我们来了解幂级数展开。
在复变函数中,如果一个函数在某个点处存在幂级数展开,则该函数在该点附近可用幂级数表达。
具体而言,如果函数f(z)在z=a处存在幂级数展开,则可将其表示为:f(z)=∑(n=0)∞(c_n(z-a)^n)其中,c_n为系数,(z-a)^n为幂函数,n为幂函数的次数。
当幂级数的收敛半径大于0时,幂级数展开是唯一的,我们可以通过计算系数c_n的方式来确定展开后的幂级数形式。
幂级数展开的重要性在于它将复杂的函数问题转化为简单的级数问题,方便我们进行具体的计算和分析。
接下来,我们来了解解析延拓。
解析延拓是指通过已知函数的定义域外一些特殊点上的性质,对函数进行延拓,使其在更大的区域内成为解析函数。
解析函数是指在某个区域内可用幂级数展开并且展开式在整个区域内收敛的函数。
解析延拓的目的是拓宽函数的定义域并使其在更广泛的情况下成为解析函数,从而更好地研究函数的性质和应用。
解析延拓常用的方法有奇点补充法和全纳域逼近法。
奇点补充法是通过找到并补充函数奇点,使函数在整个区域内成为解析函数。
全纳域逼近法是通过选取适当的函数近似,使得在整个区域内拓宽函数的定义域并得到更广泛的解析性质。
这两种方法都需要具体问题的分析和计算来确定适合的延拓方式。
在实际应用中,幂级数展开和解析延拓都具有广泛的应用。
幂级数展开可以用于计算函数的近似值,例如通过截取前几项级数来计算函数的近似值。
而解析延拓则可以用于研究函数的性质和特点,例如通过补充函数的奇点来得到新的解析函数和新的解析性质。
总结起来,复变函数的幂级数展开和解析延拓是研究复变函数的重要方法和技巧。
幂级数展开可以将复杂的函数问题转化为简单的级数问题,方便进行计算和分析。