勾股定理-最短路径集合
- 格式:ppt
- 大小:807.00 KB
- 文档页数:9
「初中数学」勾股定理与最短距离问题勾股定理与最短路径问题最短路径问题的核心理论是:两点之间线段最短,但在不同情形中,会以不同的方式出现,也就会涉及到不同的思路和方法,比如在【几何模型】“将军饮马”问题——作一首小诗这一讲中,主要利用到两点之间线段最短和三角形两边之和大于第三边(三角形的三边关系本质上还是两点之间线段最短),而这一讲,我们主要涉及到立体图形的最短路径问题。
一、立体图形的最短路径问题的解决思路对于立体图形的最短路径问题,我们一般是利用横切或展开等手段,将其转换到平面图形中解决,而这种情形不免会在直角三角形中解决,也自然会和勾股定理扯上关系二、利用横切,转换成平面图形【例】如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一只14cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为多少?(注:内径即底面直径)【分析】若使吸管露出杯口最短,自然留在杯中最长,而最长莫过于下列情况:这样,按照上图将圆柱横切,就可以将其转换到RT△ACB 中解决,而AB可有勾股定理解得:AB=13cm,所以吸管露出杯口的最短长度AD=BD-AB=1cm【练习题】如图,将一根25cm长的细木棒,放入长、宽、高分别为8cm、6cm、10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是多少?(保留1位小数)。
三、利用展开,转换成平面图形这类问题又可以细分为两种情形:直面(正方体或长方体)和曲面(圆柱),但无论直面或曲面,一般都是展开为矩形,进而利用勾股定理解决【例】直面(正方体或长方体)【分析】研究在表面从点M到点C的最短路径,可以将正方体表面局部展开:根据“两点之间线段最短,可知最短路径,即为线段MC。
进而,在RT△CGM中,利用勾股定理,可求MC 【练习题】【例】曲面(圆柱)如图,圆柱高15cm,底面半径为8/兀cm,一蚂蚁从B点爬到A点的最短路径为多少?【分析】请注意:此题的易错点是,很多同学直接连接AB,认为此时线段AB即为最短路径。
专题09.勾股定理中的的最短路径模型勾股定理中的最短路线问题通常是以“两点之间,线段最短”为基本原理推出的。
人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题。
对于数学中的最短路线问题可以分为两大类:第一类为在同一平面内;第二类为空间几何体中的最短路线问题,对于平面内的最短路线问题可先画出方案图,然后确定最短距离及路径图。
对于几何题内问题的关键是将立体图形转化为平面问题求解,然后构造直角三角形,利用勾股定理求解。
模型1.圆柱中的最短路径模型【模型解读】圆柱体中最短路径基本模型如下:计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。
注意:1)运用勾股定理计算最短路径时,按照展开—定点—连线—勾股定理的步骤进行计算;2)缠绕类题型可以求出一圈的最短长度后乘以圈数。
【最值原理】两点之间线段最短。
例1.(2023·陕西·八年级期中)如图,有一个圆柱形杯子,其底面圆周长为24cm,高AB为18cm,现在要以点A为起点环绕杯子表面缠彩色胶带,终点正好落在点A的正上方的点B处,则彩色胶带最短要()A.15cm B.20cm C.25cm D.30cm【答案】D【点睛】本题考查的是平面展开——最短路径问题,例2.(2023·广东·八年级期中)如图,一个底面圆周长为边缘4cm的点A沿侧面爬行到相对的底面上的点A.413cm【答案】D【分析】将圆柱体展开,利用勾股定理进行求解即可.【详解】解:将圆柱体的侧面展开,连接则12412cm2BD=⨯=,又因为即蚂蚁沿表面从点A到点B【点睛】本题考查勾股定理的应用均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为______米.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,圆柱高3米,底面周长2米,2222 1.5 6.25AC ∴=+=, 2.5AC ∴=,∴每根柱子所用彩灯带的最短长度为5m .故答案为5.【点睛】本题考查了平面展开-最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.模型2.长方体中的最短路径模型【模型解读】长方体中最短路径基本模型如下:计算跟长方体有关的最短路径问题时,要熟悉长方体的侧面展开图,利用两点之间线段最短结合勾股定理进行求解,注意长方体展开图的多种情况和分类讨论。
17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。
7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
勾股定理最短路径引言勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。
而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。
本文将探讨如何利用勾股定理来解决最短路径问题。
最短路径问题最短路径问题是在一个图中寻找两个顶点之间的最短路径。
在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。
最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。
勾股定理勾股定理是由古希腊数学家毕达哥拉斯提出的。
它表述为:直角三角形的斜边的平方等于两个直角边的平方和。
即a2+b2=c2,其中c为斜边的长度,a和b为两个直角边的长度。
最短路径算法解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。
该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。
具体步骤如下:1.创建一个集合S,用于存放已经找到最短路径的顶点。
2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。
3.选择一个距离最小的顶点v,将其加入集合S。
4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新距离。
5.重复步骤3和4,直到集合S包含了所有顶点。
6.最终得到起始点到其他所有点的最短路径。
勾股定理最短路径算法在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。
假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。
如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。
具体步骤如下:1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上的坐标。
2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。
3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路径。
4.选择最短路径最小的顶点作为下一个移动的目标点。