勾股定理中的最短路径问题
- 格式:pptx
- 大小:321.80 KB
- 文档页数:5
专题01 勾股定理中的最短路径问题与翻折问题(五大题型)【题型1 与长方形有关的最短路径问题】【题型2 与圆柱有关的最短路径问题】【题型3 与台阶有关的最短路径问题】【题型4将军饮马与最短路径问题】【题型5几何图形中翻折、旋转问题】【方法技巧】长方体最短路径基本模型如下:几何体中最短路径基本模型如下:基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解【题型1 与长方体有关的最短路径问题】【典例1】(2023•丹江口市模拟)如图,地面上有一个长方体盒子,一只蚂蚁在这个长方体盒子的顶点A处,盒子的顶点C′处有一小块糖粒,蚂蚁要沿着这个盒子的表面A处爬到C′处吃这块糖粒,已知盒子的长和宽为均为20cm,高为30cm,则蚂蚁爬行的最短距离为()cm.A.10B.50C.10D.70【变式1-1】(2022秋•新都区期末)一个长方体盒子的长、宽、高分别为15cm,10cm,20cm,点B离点C的距离是5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到点B,蚂蚁爬行的最短路程是()A.10cm B.25cm C.5cm D.5cm【变式1-2】(2023春•光泽县期中)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.D.35【变式1-3】(2023春•灵丘县月考)如图,正方体的棱长为3cm,已知点B与点C之间的距离为1cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为()A.B.5cm C.4cm D.【变式1-4】(2022秋•莲湖区期末)如图,正方体盒子的棱长为2,M为EH的中点,现有一只蚂蚁位于点B处,它想沿正方体的表面爬行到点M处获取食物,则蚂蚁需爬行的最短路程为()A.B.C.D.【变式1-5】(2022秋•汝阳县期末)如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A.B.C.D.【变式1-7】(2022秋•平昌县期末)如图是一个长方体盒子,其长,宽、高分别为4,2,9,用一根细线绕侧面绑在点A,B处,不计线头,细线的最短长度为()A.12B.15C.18D.21【变式1-8】(2023•陇县三模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()厘米.A.8B.10C.12D.13【变式1-10】(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是()A.cm B.4cm C.cm D.5cm【题型2 与圆柱有关的最短路径问题】(2023春•防城区期中)如图,一圆柱高BC=12πcm,底面周长是16πcm,【典例2】P为BC的中点,一只蚂蚁从点A沿圆柱外壁爬到点P处吃食,要爬行的最短路程是()A.12πcm B.11πcm C.10πcm D.9πcm【变式2-1】(2023春•德州期中)如图,圆柱形玻璃容器高18cm,底面圆的周长为48cm,在外侧底部点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧顶端的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度()A.52cm B.30cm C.D.60cm【变式2-2】(2023春•夏津县期中)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m 时,这段葛藤的长是()m.A.3B.2.6C.2.8D.2.5【变式2-3】(2023春•东港区校级月考)如图所示,已知圆柱的底面周长为36,高AB=5,P点位于圆周顶面处,小虫在圆柱侧面爬行,从A点爬到P点,然后再爬回C点,则小虫爬行的最短路程为()A.26B.13+C.13D.2【变式2-4】(2023春•富顺县校级月考)如图,一个底面圆周长为24cm,高为9cm的圆柱体,一只蚂蚁从距离上边缘4cm的点A沿侧面爬行到相对的底面上的点B所经过的最短路线长为()A.cm B.15cm C.14cm D.13cm【变式3-5】(2022秋•蒲城县期末)今年9月23日是第五个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为20cm的圆柱粮仓模型.如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为()A.20πcm B.40πcm C.D.【变式2-6】(2023春•宣化区期中)如图,圆柱底面半径为,高为18cm,点A、B分别是圆柱两底面圆周上的点,且点B在点A的正上方,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.21cm B.24cm C.30cm D.32cm【变式2-7】(2023春•随县期末)如图是学校艺术馆中的柱子,高4.5m.为迎接艺术节的到来,工作人员用一条花带从柱底向柱顶均匀地缠绕3圈,一直缠到起点的正上方为止.若柱子的底面周长是2m,则这条花带至少需要m.【题型3 与台阶有关的最短路径问题】【典例3】(2023春•连山区期末)如图是楼梯的一部分,若AD=2,BE=1,AE=3,一只蚂蚁在A处发现C处有一块糖,则这只蚂蚁吃到糖所走的最短路程为()A.B.3C.D.2【变式3-1】(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()cm.A.10B.50C.120D.130【变式3-2】(2023春•西塞山区期中)如图,在一个长为20m,宽为16m的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2m的正方形,一只蚂蚁从点A处爬过木块到达点C处需要走的最短路程是m.【变式3-3】(2022秋•叙州区期末)如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A 点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【题型4将军饮马与最短路径问题】【典例4】(2022秋•辉县市校级期末)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()cm.A.15B.C.12D.18【变式4-1】(2022春•吴江区期末)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则该蚂蚁要吃到饭粒需爬行的最短路径长是()A.13cm B.3cm C.cm D.2cm【变式4-2】(2023春•临潼区期末)如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【变式4-3】(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为()(π取3)m.A.30B.28C.25D.22【变式4-4】(2022秋•雁峰区校级期末)如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B 处的爬行最短路线长为(杯壁厚度不计)()A.12cm B.17cm C.20cm D.25cm【变式4-5】(2022秋•郫都区期末)如图,圆柱形玻璃杯高为22cm,底面周长为30cm,在杯内壁离杯上沿3cm的点B处粘有一粒面包渣,此时一只蚂蚁正好在杯外壁,离杯底5cm与面包渣相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【题型5几何图形中翻折、旋转问题】【典例5】(2022秋•大东区校级期末)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3B.4C.5D.6【变式5-1】(2022春•安乡县期中)如图,在△ABC中,∠ACB=90°,AC=12,BC=10,点D为BC的中点,点E为AC边上一动点,连接DE.将△CDE沿DE折叠,点C的对应点为点C'.若△AEC'为直角三角形,则AE的长为.【变式5-2】(2023春•长沙期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.【变式5-3】(2022秋•绥德县期中)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【变式5-4】(2020秋•海宁市期中)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D为BC上一点,将△ABD沿AD折叠至△AB′D,AB′交线段CD 于点E.当△B′DE是直角三角形时,点D到AB的距离等于.【变式5-5】(2020•浙江自主招生)将一直径为25cm的圆形纸片(如图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体形状的纸盒(如图③),则这样的纸盒体积最大为cm3.【变式5-6】(2022秋•和平区期中)一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=.【变式5-7】(2022春•温州期末)图1是一款平衡荡板器材,示意图如图2,A,D为支架顶点,支撑点B,C,E,F在水平地面同一直线上,G,H为荡板上固定的点,GH∥BF,测量得AG=GH=DH,Q为DF上一点且离地面1m,旋转过程中,AG始终与DH保持平行.如图3,当旋转至A,Q,H在同一直线上时,连结G′Q,测得G′Q=1.6m,∠DQG′=90°,此时荡板G′H′距离地面0.6m,则点D离地面的距离为m.【变式5-8】(2022•公安县模拟)某厂家设计一种双层长方体垃圾桶,AB=84cm,BC=30cm,CP=36cm,侧面如图1所示,EF为隔板,等分上下两层.下方内桶BCFG绕底部轴(CP)旋转打开,如图2,将其打开后点G卡在隔板上,此时可完全放入下方内桶的球体的最大直径为25.2cm,求BG的长度为cm.。
勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。
其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。
下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。
1. 确定直角三角形在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。
通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。
一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。
2. 确认最短路径在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。
这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。
在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。
3. 应用勾股定理一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。
勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。
我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。
4. 注意特殊情况在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。
当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。
另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。
5. 结合实际问题当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。
我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。
在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。
希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。
勾股定理最短路径问题
勾股定理最短路径问题是一种在数学和计算机科学领域中常见的问题。
该问题
的目标是找到两个给定点之间的最短路径,并且路径中的每个线段都恰好满足勾股定理。
勾股定理是一个基本的几何定理,它表明在一个直角三角形中,斜边的平方等
于两个直角边的平方和。
勾股定理最短路径问题则是将这个定理应用到路径规划中。
为了解决这个问题,我们可以使用图论中的最短路径算法,如Dijkstra算法或
A*算法。
首先,我们将给定的起点和终点转化为图中的节点,节点之间的连接表
示可以直接连接的路径。
在每个节点中,我们需要计算到达该节点的路径长度。
以起点为起始节点,我
们开始遍历每个相邻节点,并通过计算其与起点的距离来更新节点的路径长度。
这个过程会持续进行,直到所有节点的路径长度都被计算出来。
接下来,我们需要根据勾股定理来评估路径的长度。
对于连接起点和终点的路
径上的每一段线段,我们可以根据勾股定理计算其长度。
通过将每一段线段的长度累加,我们可以得到整条路径的长度。
最后,我们可以使用最短路径算法来确定具有最短长度的路径。
这将帮助我们
找到勾股定理最短路径问题的解决方案。
总结而言,勾股定理最短路径问题是一个涉及路径规划和数学定理应用的问题。
通过使用最短路径算法,我们可以找到满足勾股定理的最短路径,从而有效地解决这个问题。
17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。
7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
小专题(一):利用勾股定律解决最短路径问题勾股定律是数学中的一个重要定理,它可以被广泛用于解决最短路径问题。
最短路径问题是在图论中常见的问题,指的是在一个加权有向图或无向图中找到从一个起点到一个终点的最短路径。
理论基础勾股定律可以用于计算两点之间的距离,它表述如下:在直角三角形中,直角边的平方等于另外两个边的平方和。
根据勾股定律,我们可以计算出两点之间的直线距离,然后利用这个距离来比较各条路径的长度,从而找到最短路径。
解决步骤解决最短路径问题可以按照以下步骤进行:1. 确定起点和终点:首先,我们需要确定问题的起点和终点,这两个点将决定我们要找到的最短路径。
2. 创建图并添加权重:根据实际情况,我们需要创建一个加权有向图或无向图,并为图中的边(路径)添加权重。
权重可以代表两点之间的距离、时间或其他衡量指标。
3. 计算距离:利用勾股定律计算两点之间的距离,将其作为边的权重。
4. 应用最短路径算法:根据图的类型和问题要求,选择合适的最短路径算法,如迪杰斯特拉算法或弗洛伊德算法。
5. 输出最短路径:根据算法计算结果,输出起点到终点的最短路径。
示例以下是一个简单的示例,展示如何利用勾股定律解决最短路径问题:假设我们有一个无向图,其中包含5个节点A、B、C、D和E,节点之间的边权重如下:- AB: 3- AC: 4- BD: 2- CE: 5- DE: 3现在我们想找到从节点A到节点E的最短路径。
根据勾股定律,我们可以计算出各路径的长度:- AB: 3- AC: 4- AD: 5- AE: √(3^2 + 4^2) = 5根据距离,我们可以得出最短路径为A -> B -> D -> E,路径长度为7。
结论利用勾股定律可以解决最短路径问题。
通过计算两点之间的距离,我们可以比较各条路径的长度,并找到起点到终点的最短路径。
在实际应用中,我们可以根据具体情况选择合适的最短路径算法来解决问题。
勾股定理最短路径引言勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。
而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。
本文将探讨如何利用勾股定理来解决最短路径问题。
最短路径问题最短路径问题是在一个图中寻找两个顶点之间的最短路径。
在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。
最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。
勾股定理勾股定理是由古希腊数学家毕达哥拉斯提出的。
它表述为:直角三角形的斜边的平方等于两个直角边的平方和。
即a2+b2=c2,其中c为斜边的长度,a和b为两个直角边的长度。
最短路径算法解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。
该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。
具体步骤如下:1.创建一个集合S,用于存放已经找到最短路径的顶点。
2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。
3.选择一个距离最小的顶点v,将其加入集合S。
4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新距离。
5.重复步骤3和4,直到集合S包含了所有顶点。
6.最终得到起始点到其他所有点的最短路径。
勾股定理最短路径算法在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。
假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。
如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。
具体步骤如下:1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上的坐标。
2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。
3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路径。
4.选择最短路径最小的顶点作为下一个移动的目标点。