二,放射性测量
- 格式:ppt
- 大小:3.83 MB
- 文档页数:34
核污染怎样检测
核污染的检测可以通过以下几种方法:
1. 放射性检测:使用放射性探测仪器测量地表、水体、大气和生物体中的放射性物质浓度和活度,如α、β、γ射线等。
2. 核素分析:对环境样品进行实验室分析,测量其中的放射性核素浓度,如铀、钍、钋、锕系等放射性元素以及人工放射性核素。
3. 生物监测:通过检测生物体(如植物、动物、微生物)中的放射性物质浓度和活度来评估环境中的核污染情况。
4. 土壤和水样分析:将样品收集并送入实验室,通过测量样品中的放射性物质含量,来评估土壤和水体是否受到核污染。
5. 辐射计量测量:使用辐射计测量环境和生物体中的辐射水平。
这些方法可以综合运用,以确定和评估核污染的程度和范围。
同时,不同的核污染物有着不同的检测方法和技术要求,需要根据具体情况选择合适的检测方案。
放射性测量的基本原理
放射性测量的基本原理是利用放射性物质的核衰变过程来判断其放射性强度。
放射性物质的原子核会以一定的概率自发地发生核衰变,释放出电离辐射,如α粒子、β粒子和γ射线。
这些电离辐射可以通过适当的探测器捕获和测量。
对于α粒子和β粒子,其停止距离与能量有关。
利用探测器可以测量到射线的能量,从而间接测量射线的类型。
例如,通过测量α粒子的能量损失,可以确定其来源、测量其强度。
γ射线是高能电磁波,不带电,因此可以穿透物质。
利用探测器可以测量γ射线的能量和强度,从而判断放射性物质的类型和浓度。
放射性测量常用的探测器包括闪烁体探测器、比计数器和核电子学设备。
这些探测器能够将射线转化为电信号,经过放大、测量和分析处理后得到放射性强度的数据。
放射性测量广泛应用于核工业、医学、环境保护等领域。
通过准确测量放射性物质的强度,可以评估辐射风险、控制辐射剂量、保护公众健康。
放射性检测标准放射性检测是指对物质中放射性核素的含量进行测定和分析的过程。
放射性核素是指具有放射性的原子核,它们会通过放射性衰变释放出粒子或电磁辐射。
放射性检测标准的制定对于保障公共安全和环境保护具有重要意义。
一、放射性检测的重要性。
放射性核素的存在可能会对人体健康和环境造成严重危害,因此需要对其进行及时准确的检测。
放射性检测的主要目的包括,监测环境中放射性核素的浓度,控制放射性物质的排放,保障食品和饮用水的安全,以及评估放射性污染对人体健康和生态系统的影响。
二、放射性检测的技术手段。
放射性检测主要依靠核辐射测量仪器进行,常用的检测技术包括γ射线能谱分析、液体闪烁计数、α、β射线计数等。
这些技术能够对不同种类的放射性核素进行快速、准确的检测和分析,保证了放射性检测的可靠性和精准度。
三、放射性检测的标准制定。
放射性检测的标准制定是为了保证检测结果的准确性和可比性。
标准制定的过程需要考虑到放射性核素的种类、浓度、检测方法、设备精度等多个因素,确保了检测结果的可靠性和准确性。
同时,标准制定还需要考虑到国际标准的统一性,以便于国际间的放射性检测结果比对和交流。
四、放射性检测标准的应用。
放射性检测标准的应用范围非常广泛,涉及到环境监测、食品安全、医疗卫生、辐射防护等多个领域。
通过严格执行放射性检测标准,可以及时发现和控制放射性污染,保障公众健康和环境安全。
五、放射性检测标准的未来发展。
随着科学技术的不断进步,放射性检测标准也在不断完善和更新。
未来,放射性检测标准将更加注重对新型放射性核素的检测和监测,提高检测方法的灵敏度和准确性,加强对放射性污染的预防和控制,以及加强国际间的合作和交流,共同应对全球放射性安全挑战。
总结,放射性检测标准的制定和执行对于保障公共安全和环境保护具有重要意义。
通过严格执行放射性检测标准,可以及时发现和控制放射性污染,保障公众健康和环境安全。
未来,放射性检测标准将更加注重对新型放射性核素的检测和监测,提高检测方法的灵敏度和准确性,加强国际间的合作和交流,共同应对全球放射性安全挑战。
放射性物质检测方法放射性物质的存在在许多领域都具有重要意义,尤其是在核能应用、医学诊断和环境监测等方面。
为了保障人类健康和环境安全,需要开发出有效的放射性物质检测方法。
本文将介绍几种常见的放射性物质检测方法,并探讨其原理和应用。
一、闪烁体法闪烁体法是一种常见的放射性物质检测方法,在核能应用和医学领域广泛应用。
该方法利用闪烁体材料对放射性粒子的能量沉积产生的光信号进行检测。
其基本原理是当放射性粒子进入闪烁体后,与闪烁体中的原子发生作用,产生能量。
这部分能量随后通过光子释放出来,被光电倍增管或光敏元件转化为电信号,再进行测量和分析。
二、液闪法液闪法是一种基于有机液体闪烁体的放射性物质检测方法。
相比于固体闪烁体,液闪体具有更高的灵敏度和探测效率。
该方法首先将液体样品与闪烁剂混合,形成液闪体。
当放射性粒子进入液闪体后,产生的能量将被液闪体中的分子吸收,并释放出光信号。
通过光电倍增管或光敏元件转化为电信号后,可以得到放射性物质的浓度。
三、放射化学分析法放射化学分析法是一种基于化学反应的放射性物质检测方法。
该方法通过放射性物质与特定试剂或载体发生化学反应,形成放射性标记物质,再利用特定的分析技术进行测量。
常见的放射化学分析方法包括沉淀法、萃取法和溶液交换法等。
这些方法在核能应用和环境监测中具有重要意义,可以对放射性物质进行定量和定性分析。
四、质谱法质谱法是一种高灵敏度的放射性物质检测方法,适用于对微量放射性物质的测量。
该方法基于质谱仪的原理,通过将放射性样品中的原子或分子离子化,在磁场或电场的作用下进行质量分离和测量。
质谱法能够准确测量放射性物质的同位素含量,对于核能应用和放射性废物管理非常重要。
在放射性物质检测方法的选择中,需要综合考虑目标物质的特性、样品类型、检测灵敏度和测量精度等因素。
不同的方法在不同应用场景中有各自的优势和适用性。
此外,不同的放射性物质检测方法还可以相互结合,提高检测结果的准确性和可靠性。
放射性检测原理
放射性检测原理是通过测量物质中放射性核素的放射性衰变活度来判断其是否存在放射性。
放射性核素会自发地发射射线,例如α射线、β射线或γ射线。
这些射线有足够高的能量可以穿透物质并与探测器相互作用。
探测器可以测量射线的能量和通量,从而确定放射性核素的存在和浓度。
放射性核素衰变的速率可以用半衰期来衡量。
半衰期是指放射性核素衰变活度降低一半所需的时间。
衰变活度越高,射线通量就越大。
在放射性检测中,常用的探测器有闪烁体探测器、电离室和半导体探测器。
闪烁体探测器通过射线与闪烁体碰撞后释放的光信号来测量活度。
电离室测量射线通过物质后所产生的电离,而半导体探测器则通过测量由射线产生的电荷来确定射线的能量和通量。
放射性检测可以应用于许多领域,例如核能科学、环境监测和医学诊断。
通过准确测量放射性核素的活度,可以评估其对人体和环境的潜在影响,并采取适当的防护措施。
同时,放射性检测也可以帮助诊断和治疗某些疾病,如肿瘤。
虽然放射性具有一定的危险性,但当在安全操作和监测下进行时,放射性检测是一项有益的技术。
通过遵循适当的安全规程和使用经过校准的仪器,可以确保放射性检测的准确性和安全性。
放射性测量⽅法放射性测量⽅法课后练习xxxxxxxxxxx xxxxx第⼀章放射性⽅法勘查的基本⽅法1.何为放射性现象?放射性现象是何时何地何⼈⾸先发现的?核科学有何发展前景?答:放射性现象是某些核素原⼦核能够⾃发的发⽣衰变放出α、β、γ等射线的现象叫放射性现象。
放射性现象1896年法国物理学家贝克勒尔在对⼀种荧光物质硫酸钾铀研究时发现了天然放射性。
核科学在以下⽅⾯有较好的发展前景如下:⾸先核基础研究和⽀撑技术领域,如加快各种强留加速器和同步辐射加速器的发展;其次核能技术领域,发展新型核电设备,研制空间核动⼒系统,研制⼤功率激光器等;核燃料循环技术领域,建设更全⾯的核废料处理循环产业。
提⾼利⽤率降低环境破坏和污染。
最后核技术应⽤领域,开发新型核探测和放射源制造⼯艺,在环境治理上的应⽤。
2.请写出α衰变、β衰变、γ跃迁定义。
绘出U-238放射性系列衰变图。
答:放射性核素的原⼦核⾃发的放出α粒⼦⽽变成另⼀种核素的原⼦核的过程称为α衰变。
放射性核素的原⼦核⾃发的放出β粒⼦或俘获⼀个轨道电⼦⽽变成另⼀个核素的原⼦核的过程称为β衰变。
(β衰变分β-,β+,轨道电⼦俘获三种。
)原⼦核由激发态跃迁到较低能态,⽽核的原⼦序数Z和质量数A均保持不变的过程,称为γ跃迁。
3.写出天然放射性系列中的主要放射性核素,分析放射性系列及其主要的辐射体。
答:主要放射性核素:铀U,镤Pa,钍Th,锕Ac,镭Ra,钫Fr,氡Rn,砹At,钋Po,铋Bi,铅Pb,铊Tl。
、铀系列的母体核素为238U,铀系列的质量数都是4的整数倍再加2,即服从A=4n+2的规律(其中n=51~59),所以铀系也叫做4n+2系列。
在整个系列中母体核素238U的半衰期最长,为4.468x10^9年,⼦体核素中218Po、214Pb、214Bi、214Po、210Tl等的寿命都很短,234U的半衰期最长,为2.45x10^5年。
钍系列的母体核素为232Th,他经过10次衰变后称为稳定的核数208Pb。
一、放射性的度量单位1、照射量X(库仑每千克/伦琴R)表示Χ或γ射线在空气中产生电离大小的物理量(X=dQ/dm)dQ是指质量为dm的体积单元的空气中,光子释放的所有电子(负电子和正电子)在空气中全部被阻时,形成的同一种符号(正或负)的离子的总电荷的绝对值。
单位: (C. kg-1) 库伦/千克,旧单位是伦琴(R),1 R=2.58×10-4 C.kg-1照射量率:指单位时间内的照射量。
2、吸收剂量D(戈瑞Gy/拉德rad)吸收剂量是单位质量的物质对辐射能的吸收量(D=dε/dm)dε与dm分别代表受电离辐射作用的某一体积元中物质的平均能量与物质的质量.单位:Gy(戈瑞),1 Gy=1 J.kg-1。
吸收剂量适用于任何电离辐射和任何物质,是衡量电离辐射与物质相互作用的一种重要的物理量。
吸收剂量率:单位时间内的吸收剂量,单位 Gy.s-1。
3、剂量当量H(希沃特SV /雷姆rem)在人体组织中某一点处的剂量当量H等于吸收剂量与其他修正因数的乘积(H=DQN)Q为品质因子,亦称为线质系数,不同电离辐射的Q值列于表8-1;N为其它修正系数,是吸收剂量在时间或空间上分布不均匀性修正因子的乘积,对外照射源通常取N=1。
单位:SV(希沃特),1 SV=1 J.kg-1表8-1 品质因数与照射类型、射线种类的关系二、环境中放射性的来源(一)天然源1、宇宙射线初级宇宙线—高能辐射,穿透力很强;次级宇宙线—比初级弱;放射性核素-20余种。
2、天然放射性核素—与地球共生3、天然放射本源—半衰期极长,强度弱(二)人工源1、核试验及航天事故-核裂变产物和中子活化产物放射性尘埃可在大气层滞留0.3—3年2、核工业:核废弃物(核发电)3、工农业、医学和科研等部门(医学占人工污染源的90%)4、放射性矿的开采和利用三、放射性污染的特点放射性污染虽然是由于具有放射性核素的化学物质而造成的,但是放射性污染与一般的化学毒害物质污染有显著区别。
放射性测量方法[ 录入者:cacc | 时间:2010-04-22 10:43:24 | 作者:[标签:作者] | 来源:[标签:出处] | 浏览:100次]放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。
用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为探测器(probe)。
测量射线有各种不同的仪器和方法,正如麦凯在1953年所说:“每当物理学家观察到一种由原子粒子引起的新效应,他都试图利用这种新效应制成一种探测器”。
一般将探测器分为两大类,一是“径迹型”探测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能粒子物理研究领域。
二是“信号型”探测器,包括电离计数器,正比计数器,盖革计数管,闪烁计数器,半导体计数器和契伦科夫计数器等,这些信号型探测器在低能核物理、辐射化学、生物学、生物化学和分子生物学以及地质学等领域越来越得到广泛地应用,尤其是闪烁计数器是生物化学和分子生物学研究中的必备仪器之一。
一、闪烁型探测器1.探测原理闪烁型探测器由闪烁体,光电倍增管,电源和放大器-分析器-定标器系统组成,现代闪烁探测器往往配备有计算机系统来处理测量结果。
当射线通过闪烁体时,闪烁体被射线电离、激发,并发出一定波长的光,这些光子射到光电倍增管的光阴极上发生光电效应而释放出电子,电子流经电倍增管多级阴极线路逐级放大后或为电脉冲,输入电子线路部分,而后由定标器记录下来。
光阴极产生的电子数量与照射到它上面的光子数量成正比例,即放射性同位素的量越多,在闪烁体上引起闪光次数就越多,从而仪器记录的脉冲次数就越多。
测量的结果可用计数率,即射线每分钟的计数次数(简写为cpm)表示,现代计数装置通常可以同时给出衰变率,即射线每分钟的衰变次数(简写dpm)、计数效率(E)、测量误差等数据,闪烁探测器是近几年来发展较快,应用最广泛的核探测器,它的核心结构之一是闪烁体。
放射性核素的测量
放射性核素的测量是通过核辐射的测量来进行的。
常用的方法包括
以下几种:
1. Geiger-Muller计数器:这是一种常见的简单放射性测量设备,通
过测量辐射粒子的数量来确定放射性核素的水平。
计数器中的气体放
射性根据被辐射的能量释放电荷,进而通过电子学装置进行计数。
2. 闪烁体计数器:这种装置使用闪烁晶体来测量辐射,当放射性粒
子通过晶体时,会在晶体中产生闪烁,被光电倍增管测量到。
3. 核电子学仪器:这种仪器适用于更精密的测量,可以提供辐射的
能谱图和连续的测量。
通常使用多道分析器或谱仪来测量放射性活度。
4. 电离室:电离室是一种通过测量辐射粒子电离产生的电流来测量
核辐射水平的装置。
它适用于高能辐射的测量,并可以提供较准确的
结果。
这些方法可以用于测量不同种类的放射性核素,包括α、β和γ射线。
在进行放射性核素的测量前,需要选择合适的测量方法,并进行
必要的辐射防护和校准。
二、放射性活度测量放射性活度是衡量放射性核素发生自发变化(核跃迁)的物理量。
它的定义是:“在给定时刻处于特定能态下的一定量放射性核素的放射性活度A是dN除以dt所得的商。
其中dN是在时间间隔dt内能态发生自发核跃迁数的期望值。
(注定义中的“特定能态”是指该核索德基态;“自发核跃迁”是指自发核变化或同质异能跃迁。
)”。
测量放射性活度的绝对方法有多种,通常使用的方法有:4πβ正比计数法、4πββs--k Υ符合法、4πXXs--kΥ符合法,液体闪烁4πββs--kΥ符合法、低水平β射线计数法和α/β量热计法等。
(一)4πβ放射性活度基准器。
4πβ放射性活度测量装置由4πβ正比计数器、放大器、定标器和高压电源组成。
它是早期建立的基准装置之一。
一九五九年由国家计量局委托原子能研究所筹建,一九六五年建成。
在研制阶段,该装置曾为中国第一颗原子弹制造中的“燃耗值测定”提供了99Mo、95Zr、98Sr、140Ba等标准放射源。
由于放射源自吸收修正带入的误差难以克服,加之后来效率示踪法、液体闪烁法的发展,4πβ放射性活度测量装置在日常检定中已很少使用,但在放射性核素生产、医学、环境监测、仪表刻度及军事上,曾起过不可低估的历史作用。
(二)4πββs--kΥ符合法放射性活度基准装置。
凡是放射性核素在1次β衰变时同时发射1个Υ光子的情况,4πββs--kΥ符合法就能适用。
将放射源放在正比计数器内,正比计数器记录β粒子。
用碘化钠晶体和光电倍增管组成闪烁计数器,记录Υ射线。
再用适当的电子设备(符合线路)对发生的符合事件进行记录。
设用εβ和εΥ分别表示β道和Υ道的计数效率,β道、Υ道和符合道的计数率分别为:Nβ=N0εβNΥ=N0εΥNC=N0εβεΥ可得到:活度:N0=NβNΥ这就是理想情况下表示4πβ-Υ符合法原理的一般公式。
实际上,根据这一原理,还要考虑偶然符合等修正。
应用效率外推技术,则可以用于测量有复杂衰变谱的核素。
二聚体定量由于二聚体在有机反应、生物酶催化反应、蛋白质和核酸的交联反应等的参与,其定量的重要性不言而喻,因而二聚体定量变得越来越重要。
下文将介绍几种用于二聚体定量的方法:一、电泳法:电泳法是指利用电力作用力,使二聚体在电泳垫上运动,利用二聚体在电泳垫中的运动路径作为判断来源,从而测定二聚体的含量。
其有效的原理是:细胞内的二聚体采用改性的蛋白质胶体添加到一个电泳容器中,然后将这个容器放入一个导电板中,导电板中的电压将会使二聚体在电泳容器中产生运动,当电压到达一定的强度时,二聚体就会离开电泳容器,从而实现测量目的。
二、放射性标记:放射性标记法是一种非常常用的定量方法,其原理与电泳法类似,只是在电泳垫上放置了一层放射性标记物。
当二聚体运动时,放射性标记物就会与二聚体结合,从而达到定量的目的。
三、质谱分析:质谱定量是通过分子质量分析仪取得其分析值,来实现二聚体定量的方法。
质谱分析定量需要对样品进行标准化处理,把样品分成几段,分别对每一段进行定量分析,从而计算出反应物的量。
四、吞吐酶定量:吞吐酶定量是一种以表观物质定量的方法,其原理和质谱定量一样,只是把分子质量分析仪换成了光学吞吐酶分析仪。
通过光学吞吐酶分析仪测定二聚体的含量,可以迅速准确地完成定量分析。
以上就是二聚体定量的几种方法,它们都有着自己的优势和局限性,大家可以根据实际情况来选择比较合适的方法进行二聚体定量。
在实验室中,正确的二聚体定量不仅可以为生物学研究带来很大的便利,也能让我们更好地了解蛋白质的结构和功能,甚至帮助我们揭示一些复杂的生物化学过程。
总之,二聚体定量在生物学研究中非常重要,准确的定量结果有助于解释生物反应的物理机制。
需要重视的是,二聚体定量一定要有规范的测量标准和建立可靠的定量分析流程,这样才能保证实验结果的准确性和可靠性。