放射性测量的技术
- 格式:ppt
- 大小:1.04 MB
- 文档页数:58
放射性测量的基本原理放射性测量是一种用于检测放射性物质存在和水平的方法。
它是通过测量放射性物质的各种特性来进行的,包括衰变率、能量、射线类型和强度等。
放射性测量在核能工业、医学诊断、环境监测以及科学研究等领域都有广泛的应用。
放射性物质的衰变率是放射性测量的核心参数之一。
放射性物质具有固有的衰变速率,即单位时间内放射性原子核衰变的数量。
这种衰变速率可以用半衰期来描述,半衰期是指在该时间内放射性原子核衰变一半的时间。
通过测量单位时间内放射性物质衰变的数量,可以了解到放射性物质的存在量。
放射性物质的衰变过程中会产生辐射,这些辐射包括α粒子、β粒子和γ射线等。
α粒子是由两个质子和两个中子组成的高能粒子,具有较大的电离能力。
β粒子可以是电子或正电子,其电离能力较弱。
γ射线则是电磁波的一种,具有极高的穿透能力和较强的电离能力。
放射性测量可以通过测量这些辐射的能量和类型来确定放射性物质的存在和水平。
放射性测量还可以通过测量辐射的强度来推断放射性物质的存在和含量。
辐射的强度是指单位面积或单位体积内射线通过的个数或能量。
常用的测量方法包括个人剂量计、辐射计和放射性计数器等。
个人剂量计是一种用于测量人体接受的辐射剂量的设备,通常佩戴在身上。
辐射计是一种用于测量环境中放射性物质辐射水平的设备。
放射性计数器是一种用于测量放射性物质样品中辐射的设备。
通过测量辐射的强度,可以了解到放射性物质的存在和浓度。
放射性测量涉及到许多仪器和技术的应用。
常用的放射性测量技术包括放射性测量仪器、核素鉴定仪器和核素溯源技术等。
放射性测量仪器包括γ射线谱仪、液闪计数器、闪烁体计数器和多道分析系统等,它们可以用于测量射线的能量和强度。
核素鉴定仪器可以用于识别放射性物质中的核素种类,例如质谱仪、核电子学仪器和γ射线光谱仪等。
核素溯源技术可以用于追踪放射性物质的来源和传播路径,包括核素定位技术和核素追踪技术等。
总之,放射性测量是一种通过测量放射性物质的衰变率、能量、射线类型和强度等特性来确定其存在和水平的方法。
地质勘查放射性测量方法浅析放射性勘探用于地质工作,始于20世纪20~30年代,而用于工程物探领域则从50年代后期开始。
放射性测量技术能够根据不同的找矿阶段,将其具体划分为矿山测量、勘探、详查和普查等内容。
根据需要解决的地质任务的区别又可以将其分为室内分析、辐射取样、r测井、射气法、r法等,通过对相关文献资料的查找、分析、处理和整理,对强度异常变化等值线图进行编制,定性分析异常情况及其发生原因,定量分析其解决方法等。
1 放射性法在地质填图中的应用放射性与不同的构造破碎情况和岩性等存在直接联系,所以可以将放射性技术用于地质填图。
在地质填图过程中,通常应用放射性法r对氡气和能谱等进行测量。
通过对比分析第四系沉积物图件、化探图件、地质图件、岩性分类及与钾、钍、铀的多参考图件,能够为成矿远景评价、侵入体内部构造研究岩体划分等工作提供参考,尤其是随着近年来计算机技术的广泛应用以及数据处理技术的逐渐发展完善,r能谱测量过程中获取的数据,能够在野外进行即时的现场处理,并形成资料图,从而为后续的地质填图工作提供可靠的指导。
2 放射性法在地质年代、密度、温度等参数测定中的应用2.1 地质年代的确定对岩样的地质年代和地球的年龄进行测定,长期以来一直是地质研究人员关注的焦点,也是地质勘查的主要难点。
在放射性蜕变规律面世后,通过关系式对比分析经历一段时间之后尚存的原子数和初始原子数目,能够对该样品的存在时间加以确定。
蜕变常数一般是固定的,仅取决于核素的不同,这就能够获得一个相对较为准确且有效的地质年代测定方法。
在理想的情况下,按照公式能够对岩矿样品的绝对年龄进行相对准确的计算。
现阶段常用的地质年代计算方法包括铀-铅法和铷-锶法等,其主要用于古矿物和岩石绝对年龄的测算,而年轻的岩、矿样品则主要通过碳-1法和镤-锾法等加以检测,也可通过热释光法对地质的年代进行测算。
利用不同的方式,其检测结果也存在不同的特征,因而可以通过不同的方式进行计算并互为佐证。
放射性检测标准放射性检测是指对物质中放射性核素的含量进行测定和分析的过程。
放射性核素是指具有放射性的原子核,它们会通过放射性衰变释放出粒子或电磁辐射。
放射性检测标准的制定对于保障公共安全和环境保护具有重要意义。
一、放射性检测的重要性。
放射性核素的存在可能会对人体健康和环境造成严重危害,因此需要对其进行及时准确的检测。
放射性检测的主要目的包括,监测环境中放射性核素的浓度,控制放射性物质的排放,保障食品和饮用水的安全,以及评估放射性污染对人体健康和生态系统的影响。
二、放射性检测的技术手段。
放射性检测主要依靠核辐射测量仪器进行,常用的检测技术包括γ射线能谱分析、液体闪烁计数、α、β射线计数等。
这些技术能够对不同种类的放射性核素进行快速、准确的检测和分析,保证了放射性检测的可靠性和精准度。
三、放射性检测的标准制定。
放射性检测的标准制定是为了保证检测结果的准确性和可比性。
标准制定的过程需要考虑到放射性核素的种类、浓度、检测方法、设备精度等多个因素,确保了检测结果的可靠性和准确性。
同时,标准制定还需要考虑到国际标准的统一性,以便于国际间的放射性检测结果比对和交流。
四、放射性检测标准的应用。
放射性检测标准的应用范围非常广泛,涉及到环境监测、食品安全、医疗卫生、辐射防护等多个领域。
通过严格执行放射性检测标准,可以及时发现和控制放射性污染,保障公众健康和环境安全。
五、放射性检测标准的未来发展。
随着科学技术的不断进步,放射性检测标准也在不断完善和更新。
未来,放射性检测标准将更加注重对新型放射性核素的检测和监测,提高检测方法的灵敏度和准确性,加强对放射性污染的预防和控制,以及加强国际间的合作和交流,共同应对全球放射性安全挑战。
总结,放射性检测标准的制定和执行对于保障公共安全和环境保护具有重要意义。
通过严格执行放射性检测标准,可以及时发现和控制放射性污染,保障公众健康和环境安全。
未来,放射性检测标准将更加注重对新型放射性核素的检测和监测,提高检测方法的灵敏度和准确性,加强国际间的合作和交流,共同应对全球放射性安全挑战。
放射性物质检测方法放射性物质的存在在许多领域都具有重要意义,尤其是在核能应用、医学诊断和环境监测等方面。
为了保障人类健康和环境安全,需要开发出有效的放射性物质检测方法。
本文将介绍几种常见的放射性物质检测方法,并探讨其原理和应用。
一、闪烁体法闪烁体法是一种常见的放射性物质检测方法,在核能应用和医学领域广泛应用。
该方法利用闪烁体材料对放射性粒子的能量沉积产生的光信号进行检测。
其基本原理是当放射性粒子进入闪烁体后,与闪烁体中的原子发生作用,产生能量。
这部分能量随后通过光子释放出来,被光电倍增管或光敏元件转化为电信号,再进行测量和分析。
二、液闪法液闪法是一种基于有机液体闪烁体的放射性物质检测方法。
相比于固体闪烁体,液闪体具有更高的灵敏度和探测效率。
该方法首先将液体样品与闪烁剂混合,形成液闪体。
当放射性粒子进入液闪体后,产生的能量将被液闪体中的分子吸收,并释放出光信号。
通过光电倍增管或光敏元件转化为电信号后,可以得到放射性物质的浓度。
三、放射化学分析法放射化学分析法是一种基于化学反应的放射性物质检测方法。
该方法通过放射性物质与特定试剂或载体发生化学反应,形成放射性标记物质,再利用特定的分析技术进行测量。
常见的放射化学分析方法包括沉淀法、萃取法和溶液交换法等。
这些方法在核能应用和环境监测中具有重要意义,可以对放射性物质进行定量和定性分析。
四、质谱法质谱法是一种高灵敏度的放射性物质检测方法,适用于对微量放射性物质的测量。
该方法基于质谱仪的原理,通过将放射性样品中的原子或分子离子化,在磁场或电场的作用下进行质量分离和测量。
质谱法能够准确测量放射性物质的同位素含量,对于核能应用和放射性废物管理非常重要。
在放射性物质检测方法的选择中,需要综合考虑目标物质的特性、样品类型、检测灵敏度和测量精度等因素。
不同的方法在不同应用场景中有各自的优势和适用性。
此外,不同的放射性物质检测方法还可以相互结合,提高检测结果的准确性和可靠性。
放射性检测原理
放射性检测原理是通过测量物质中放射性核素的放射性衰变活度来判断其是否存在放射性。
放射性核素会自发地发射射线,例如α射线、β射线或γ射线。
这些射线有足够高的能量可以穿透物质并与探测器相互作用。
探测器可以测量射线的能量和通量,从而确定放射性核素的存在和浓度。
放射性核素衰变的速率可以用半衰期来衡量。
半衰期是指放射性核素衰变活度降低一半所需的时间。
衰变活度越高,射线通量就越大。
在放射性检测中,常用的探测器有闪烁体探测器、电离室和半导体探测器。
闪烁体探测器通过射线与闪烁体碰撞后释放的光信号来测量活度。
电离室测量射线通过物质后所产生的电离,而半导体探测器则通过测量由射线产生的电荷来确定射线的能量和通量。
放射性检测可以应用于许多领域,例如核能科学、环境监测和医学诊断。
通过准确测量放射性核素的活度,可以评估其对人体和环境的潜在影响,并采取适当的防护措施。
同时,放射性检测也可以帮助诊断和治疗某些疾病,如肿瘤。
虽然放射性具有一定的危险性,但当在安全操作和监测下进行时,放射性检测是一项有益的技术。
通过遵循适当的安全规程和使用经过校准的仪器,可以确保放射性检测的准确性和安全性。
辐射物理学中的放射性探测技术在辐射物理学中,放射性探测技术是非常重要的一种技术手段。
利用这种技术,我们可以有效地监测和测量放射性物质的存在和浓度,以及评估相关的风险和影响。
在本文中,我们将探讨放射性探测技术的原理、应用、发展趋势以及面临的挑战和机遇。
一、放射性探测技术的原理放射性探测技术主要利用放射性物质放射出的辐射进行探测、测量和分析。
根据辐射的性质和特点,放射性探测技术可以分为以下几类:1. 电离室探测技术:利用电离室中气体分子离子化的原理,探测和测量放射线的强度和能量。
2. 半导体探测技术:利用半导体材料对放射线的电离和电子-空穴对的生成和收集等原理,探测和测量放射线的强度和能量。
3. 闪烁体探测技术:利用闪烁材料对放射线的能量吸收和发光等原理,探测和测量放射线的强度和能量。
4. 聚变探测技术:利用聚变反应中产生的中子等粒子与材料相互作用的原理,探测和测量中子、γ射线等辐射的强度和能量。
5. 伽马相机技术:利用伽马射线对物质的穿透性和吸收性等特点,对物体进行三维成像和显像等应用。
二、放射性探测技术的应用放射性探测技术在核能、医学、环境等方面都有广泛的应用。
其中,核能领域是放射性探测技术最早和最重要的应用领域。
在核电站、核燃料加工和处理、废弃物管理等方面,利用放射性探测技术可以监测和测量放射性物质的存在和浓度,以及评估相关的风险和影响。
在医学领域,放射性探测技术也有非常重要的应用。
例如,核医学诊断中利用放射性同位素注射体内,通过γ射线探测和测量放射性物质的分布和浓度,进而诊断人体内部的生理和病理状态。
此外,放射性探测技术也常常被应用于环境监测和辐射安全方面。
例如,对工业废水、空气中的放射性物质进行监测和测量,以及对食品、水源等进行监测和评价等。
三、放射性探测技术的发展趋势随着科技水平的不断提高和需求的不断增长,放射性探测技术也在不断发展和完善。
从传统的放射性计数到精细的核素分离和识别,这些技术不仅提高了对放射性物质的检测和测量能力,而且缓解了环境和人体受到放射性物质危害的风险。
探测放射性的方法和仪器
探测放射性的方法和仪器有多种,以下是一些常见的方法和仪器:
1. 闪烁探测器:闪烁探测器使用闪烁晶体或闪烁液体来探测放射性。
当放射射线与闪烁材料相互作用时,会产生光或电荷。
该光或电荷可用于测量放射性活度。
2. GM计数器:GM计数器(盖革-穆勒计数器)是一种使用盖革-穆勒管的仪器,常用于测量放射性。
当放射粒子通过盖革-穆勒管时,会引发管中的电离效应,产生电流或电荷,从而测量放射性活度。
3. 电离室:电离室是一种使用电离效应来探测放射性的仪器。
当放射射线通过电离室时,会产生电离效应,导致电离室中的气体分子电离。
测量电离室中的电流或电荷量可以计算放射性活度。
4. 固态探测器:固态探测器使用固体半导体材料来探测放射性。
当放射射线与固态探测器相互作用时,会在材料中产生电离效应,导致电流变化。
通过测量电流变化可以计算放射性活度。
5. 闪烁体成像仪器:闪烁体成像仪器是一种通过测量闪烁材料的光信号来成像放射性分布的仪器。
常用于医学诊断和核工业等领域。
6. 相机与摄影片:放射性物质会产生比较强的射线,可以通过特殊的相机和摄
影片记录下这些射线的痕迹,从而进行放射性检测。
7. 核辐射剂量仪:核辐射剂量仪(也称为辐射剂量计)用于测量放射性辐射的剂量率或累积剂量。
它是一种便携式仪器,常用于事故现场、核电站、医院和研究实验室等环境中。
这些方法和仪器可以用于不同场合和目的,对于放射性的探测和监测起到了重要的作用。
核电站中的放射性监测与测量技术放射性监测与测量技术在核电站中具有重要的地位和作用。
它不仅能够用于核电站的工作环境监测,还可用于对废水、废气、固体废物和环境介质等进行放射性监测与测量。
本文将从放射性监测的意义、监测技术和测量技术三个方面进行探讨。
一、放射性监测的意义放射性监测是核电站安全运行的重要环节。
通过对工作环境、废水、废气等进行监测,可以及时了解核电站的放射性污染情况,保障工作人员和周边居民的健康。
同时,放射性监测还可以帮助核电站优化运行,提高核电站的运行效率和经济效益。
二、放射性监测技术1. 环境监测技术环境监测技术主要用于核电站周边环境的放射性监测。
常用的环境监测技术包括空气γ辐射监测、大气氡浓度监测、土壤γ辐射监测等。
其中,空气γ辐射监测通常采用γ辐射探测器,可以实时监测周围空气中的γ辐射水平。
大气氡浓度监测则采用氡子室等设备,可以测量大气中的氡浓度水平。
土壤γ辐射监测则通过采集土壤样品,并利用γ辐射仪进行测试。
2. 废水监测技术废水监测技术主要用于核电站所产生的废水中的放射性物质的监测。
常用的废水监测技术包括β放射性测量技术、α放射性测量技术等。
其中,β放射性测量技术通常采用β计数管或液闪计数器,可以测量废水中的β放射性物质的浓度。
α放射性测量技术则通常采用α计数管或α谱仪,可以测量废水中的α放射性物质的浓度。
3. 废气监测技术废气监测技术主要用于核电站所排放的废气中的放射性物质的监测。
常用的废气监测技术包括气溶胶监测技术、气相分析技术等。
其中,气溶胶监测技术通常采用气溶胶监测器,可以测量废气中的气溶胶放射性物质的浓度。
气相分析技术则通常采用气相色谱法或质谱法,可以测定废气中不同化学物质的含量和放射性物质的浓度。
三、放射性测量技术1. γ辐射测量技术γ辐射测量技术常用于测量核电站中的γ辐射源或放射性物质的γ辐射强度。
常用的γ辐射测量技术包括γ辐射探测器测量法、γ谱仪测量法等。
γ辐射探测器测量法适用于快速测量γ辐射场强的情况,通过探测器对γ辐射进行直接测量。
物理实验技术中的放射性测试与分析方法放射性是物理学中的一个重要研究领域,对于我们探索原子核结构、了解物质构成以及应用于核医学与核能领域都起到了重要作用。
在物理实验中,放射性测试与分析方法是非常重要的技术手段,它可以帮助我们准确测量材料中的放射性元素以及其衰变产物的含量。
下面,我们将就物理实验技术中的放射性测试与分析方法进行探讨。
1. 探测器技术探测器是放射性测试与分析方法中的重要工具,它可用于测量辐射强度、探测放射性粒子、测量辐射能量等。
常见的放射性探测器包括闪烁体探测器、半导体探测器和气体探测器等。
闪烁体探测器通过测量辐射粒子与闪烁体相互作用产生的光信号来探测辐射剂量。
半导体探测器则利用半导体材料的特殊性质来探测辐射。
气体探测器则是利用辐射与填充气体相互作用产生离子化与电子乘法效应,通过测量产生的电信号来判断辐射强度。
2. 放射性测量放射性元素的测量是探测与分析方法中的关键环节,常见的放射性测量方法有计数法和能谱法。
计数法是通过测量辐射源发出的辐射颗粒数来确定放射性元素的含量。
能谱法则是利用放射性元素衰变发出的特征能谱来确定其含量。
能谱法可以通过核辐射计或谱仪进行测量与分析。
3. 放射性分析技术放射性分析技术旨在确定放射性样品中的放射性元素特性,其中最常见的技术是核素识别与核素测定。
核素识别是通过测量辐射源的能谱,确定其中的放射性核素。
核素测定是通过测量核素发出的特征辐射强度来确定其含量。
此外,还可以应用质谱技术、活度测量技术和衰变谱技术等对放射性样品进行分析。
4. 放射性浓度测量放射性浓度测量是放射性测试与分析方法中的重要内容,它能够用于评估环境和食品中的放射性污染程度。
常见的放射性浓度测量方法包括间接测量法和直接测量法。
间接测量法是基于辐射剂量的测量,通过测量环境中的辐射强度来推断放射性污染水平。
直接测量法则是通过采样技术,收集样品后利用放射性探测器测量样品中的放射性元素含量。
总结起来,物理实验技术中的放射性测试与分析方法对于我们了解物质的放射性性质具有重要意义。
产品质量检测中的放射性物质检测方法随着科技的进步和人们生活水平的提高,人们对产品的质量要求越来越高。
而在产品质量检测中,放射性物质的检测显得尤为重要。
本文将介绍一些产品质量检测中常用的放射性物质检测方法,旨在帮助人们更好地了解产品质量检测的重要性和方法。
一、放射性物质的检测背景放射性物质是指能够自发地放射出辐射的物质,其包括了α射线、β射线和γ射线等。
这些辐射会对人体和环境产生不可忽视的影响,因此在产品质量检测中对放射性物质进行检测是必不可少的一环。
二、放射性物质检测的常见方法1. 环境放射性检测法环境放射性检测法是对空气、土壤和水等环境介质中的放射性物质进行监测和检测。
这类检测通常会采用辐射监测仪器,通过测量被检测样品中的辐射水平来确定是否存在放射性物质。
2. 食品放射性检测法食品中的放射性物质检测一直备受关注,因为人们每天都要通过食品摄入营养。
食品放射性检测通常采用核计数法,通过测定样品中的放射性同位素含量来评估食品的安全性。
3. 医疗放射性检测法医疗放射性检测是指对医疗设备和放射性药物等进行质量检测,确保其符合相关标准和要求。
医疗放射性检测通常会使用放射性计数器和核素扫描仪等仪器,通过测量来判断医疗设备和药物中是否存在放射性物质。
4. 建筑材料放射性检测法由于建筑材料中可能含有放射性物质,特别是天然矿石和矿石加工产品。
建筑材料放射性检测通常使用γ辐射测量仪,通过测量建筑材料中的γ辐射水平来评估其放射性水平。
三、放射性物质检测的重要性放射性物质的存在可能会对人体健康和环境产生严重影响。
例如,食品中的放射性同位素如镭-226和铀-238可能导致骨骼病变和癌症。
建筑材料中的放射性物质如钍-232可能释放出放射性氡,进而对人体呼吸系统产生危害。
医疗设备和放射性药物中的放射性物质如果超过一定的剂量,则可能会造成严重后果。
因此,对放射性物质进行检测是非常重要的。
通过检测,我们可以及早发现潜在的危害,并采取相应的措施来降低风险。
实验室中常用的测量放射性活度的技术在现代科学研究和工业应用中,放射性物质的使用已成为不可避免的一部分。
为了确保实验的安全性以及环境的保护,准确测量放射性活度显得尤为重要。
本文将介绍实验室中常用的测量放射性活度的技术。
一、闪烁探测器闪烁探测器是一种常用的测量放射性活度的设备。
它的工作原理是当放射性粒子与探测器内的物质相互作用时,产生的能量会激发探测器中的闪烁材料,进而发出可见光信号。
该信号经过光电倍增管放大后转化为电信号,再通过电子学装置进行处理并计算放射性活度。
广泛应用的闪烁探测器包括钠碘晶体闪烁计数器、塑料闪烁体等。
二、核计数器核计数器是以测量放射性射线的数量为基础的一种技术。
它通常由探测器和电子学设备两部分组成。
当放射性粒子穿过探测器时,探测器会记录下每个粒子的事件,通过统计一定时间内粒子的数量,便可推算出相应的放射性活度。
核计数器具有灵敏度高、测量范围广、测量结果可追溯等优点,被广泛应用于放射性物质的测量。
三、液闪技术液闪技术是近年来发展起来的一种测量放射性活度的新技术。
它通过将放射性物质溶解在液体中,利用闪烁现象进行测量。
与传统的固体闪烁探测器相比,液闪技术具有更大的探测效率和更高的能量分辨率,能够提供较准确的测量结果。
此外,液闪技术还能实现多参数测量,对于复杂样品的分析提供了更多的信息。
四、γ射线谱仪γ射线谱仪是一种能够对放射性核素进行快速、准确测量的仪器。
它基于射线与物质作用的能量转移原理,通过测量射线能量的分布来分析和判断样品中的放射性核素种类和活度。
γ射线谱仪广泛应用于核工业、材料检测和环境监测等领域,具有无损测量、快速分析等优点。
五、电离室电离室是一种用来测量放射性射线的设备,主要用于测量较高能量的γ射线或X射线。
电离室通过测量空气中发生离子化的粒子数量来计算放射性活度。
电离室结构简单、鲁棒性强,可靠性高,被广泛应用于工业、医疗和环境监测等领域。
综上所述,实验室中常用的测量放射性活度的技术包括闪烁探测器、核计数器、液闪技术、γ射线谱仪和电离室等。
放射性测量的原理和方法放射性衰变是一种自然现象,放射性核素以一定的速率衰变,释放出放射线或者粒子,同时转化为不同的核素。
放射线主要包括α粒子、β粒子和γ射线,它们具有不同的能量和穿透能力。
直接测量是指直接测量放射性物质所释放出的辐射。
常用的探测器有闪烁体探测器、正比计数管、半导体探测器等。
闪烁体探测器是一种基于辐射粒子与闪烁体发生相互作用而发出光信号的探测器。
正比计数管是一种放大电离室,辐射粒子在其中产生电离效应,产生的电离电荷经电场被收集到极板上,形成电流脉冲。
半导体探测器是利用放射性粒子与半导体形成电子孔对而产生电流脉冲的探测器。
这些探测器将放射性粒子的能带到电信号,通过电子学设备进行处理和测量。
间接测量是指通过测量放射性核素衰变产物的浓度来推测原始核素的浓度。
这种方法主要应用于液态和气态放射性样品。
其中常用的方法有撞击测量法、吸附法、沉降法和溶解法等。
撞击测量法是将气溶胶样品以高速撞击到微观颗粒上,通过颗粒中的核素的放射性活度来测量样品的浓度。
吸附法是将气溶胶样品吸附到滤纸或活性炭上,然后测量吸附物上的放射性活度。
沉降法是将气溶胶样品通过沉降进滤纸,并测量滤纸上的放射性活度。
溶解法是将放射性样品溶解在适当的溶液中,通过测量溶液中的放射性活度来推测样品的浓度。
此外,放射性测量还需要注意灵敏度、准确性和安全性。
灵敏度是指探测器对辐射的响应程度,可以通过校准来提高。
准确性是指测得结果与实际值的接近程度,可以通过校准和比对来提高。
安全性是指在测量中要严格控制辐射剂量,避免对人体和环境造成伤害。
总之,放射性测量是一种检测和测量放射性物质的重要方法,其原理基于放射性衰变和相应探测器的性能。
通过直接测量和间接测量等方法,可以获得放射性物质的浓度和放射性活度等信息。
放射性测量在核能反应、医学、环境保护等领域具有广泛的应用。
放射性测量方法[ 录入者:cacc | 时间:2010-04-22 10:43:24 | 作者:[标签:作者] | 来源:[标签:出处] | 浏览:100次]放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。
用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为探测器(probe)。
测量射线有各种不同的仪器和方法,正如麦凯在1953年所说:“每当物理学家观察到一种由原子粒子引起的新效应,他都试图利用这种新效应制成一种探测器”。
一般将探测器分为两大类,一是“径迹型”探测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能粒子物理研究领域。
二是“信号型”探测器,包括电离计数器,正比计数器,盖革计数管,闪烁计数器,半导体计数器和契伦科夫计数器等,这些信号型探测器在低能核物理、辐射化学、生物学、生物化学和分子生物学以及地质学等领域越来越得到广泛地应用,尤其是闪烁计数器是生物化学和分子生物学研究中的必备仪器之一。
一、闪烁型探测器1.探测原理闪烁型探测器由闪烁体,光电倍增管,电源和放大器-分析器-定标器系统组成,现代闪烁探测器往往配备有计算机系统来处理测量结果。
当射线通过闪烁体时,闪烁体被射线电离、激发,并发出一定波长的光,这些光子射到光电倍增管的光阴极上发生光电效应而释放出电子,电子流经电倍增管多级阴极线路逐级放大后或为电脉冲,输入电子线路部分,而后由定标器记录下来。
光阴极产生的电子数量与照射到它上面的光子数量成正比例,即放射性同位素的量越多,在闪烁体上引起闪光次数就越多,从而仪器记录的脉冲次数就越多。
测量的结果可用计数率,即射线每分钟的计数次数(简写为cpm)表示,现代计数装置通常可以同时给出衰变率,即射线每分钟的衰变次数(简写dpm)、计数效率(E)、测量误差等数据,闪烁探测器是近几年来发展较快,应用最广泛的核探测器,它的核心结构之一是闪烁体。
放射性核素的测量
放射性核素的测量是通过核辐射的测量来进行的。
常用的方法包括
以下几种:
1. Geiger-Muller计数器:这是一种常见的简单放射性测量设备,通
过测量辐射粒子的数量来确定放射性核素的水平。
计数器中的气体放
射性根据被辐射的能量释放电荷,进而通过电子学装置进行计数。
2. 闪烁体计数器:这种装置使用闪烁晶体来测量辐射,当放射性粒
子通过晶体时,会在晶体中产生闪烁,被光电倍增管测量到。
3. 核电子学仪器:这种仪器适用于更精密的测量,可以提供辐射的
能谱图和连续的测量。
通常使用多道分析器或谱仪来测量放射性活度。
4. 电离室:电离室是一种通过测量辐射粒子电离产生的电流来测量
核辐射水平的装置。
它适用于高能辐射的测量,并可以提供较准确的
结果。
这些方法可以用于测量不同种类的放射性核素,包括α、β和γ射线。
在进行放射性核素的测量前,需要选择合适的测量方法,并进行
必要的辐射防护和校准。
二、放射性活度测量放射性活度是衡量放射性核素发生自发变化(核跃迁)的物理量。
它的定义是:“在给定时刻处于特定能态下的一定量放射性核素的放射性活度A是dN除以dt所得的商。
其中dN是在时间间隔dt内能态发生自发核跃迁数的期望值。
(注定义中的“特定能态”是指该核索德基态;“自发核跃迁”是指自发核变化或同质异能跃迁。
)”。
测量放射性活度的绝对方法有多种,通常使用的方法有:4πβ正比计数法、4πββs--k Υ符合法、4πXXs--kΥ符合法,液体闪烁4πββs--kΥ符合法、低水平β射线计数法和α/β量热计法等。
(一)4πβ放射性活度基准器。
4πβ放射性活度测量装置由4πβ正比计数器、放大器、定标器和高压电源组成。
它是早期建立的基准装置之一。
一九五九年由国家计量局委托原子能研究所筹建,一九六五年建成。
在研制阶段,该装置曾为中国第一颗原子弹制造中的“燃耗值测定”提供了99Mo、95Zr、98Sr、140Ba等标准放射源。
由于放射源自吸收修正带入的误差难以克服,加之后来效率示踪法、液体闪烁法的发展,4πβ放射性活度测量装置在日常检定中已很少使用,但在放射性核素生产、医学、环境监测、仪表刻度及军事上,曾起过不可低估的历史作用。
(二)4πββs--kΥ符合法放射性活度基准装置。
凡是放射性核素在1次β衰变时同时发射1个Υ光子的情况,4πββs--kΥ符合法就能适用。
将放射源放在正比计数器内,正比计数器记录β粒子。
用碘化钠晶体和光电倍增管组成闪烁计数器,记录Υ射线。
再用适当的电子设备(符合线路)对发生的符合事件进行记录。
设用εβ和εΥ分别表示β道和Υ道的计数效率,β道、Υ道和符合道的计数率分别为:Nβ=N0εβNΥ=N0εΥNC=N0εβεΥ可得到:活度:N0=NβNΥ这就是理想情况下表示4πβ-Υ符合法原理的一般公式。
实际上,根据这一原理,还要考虑偶然符合等修正。
应用效率外推技术,则可以用于测量有复杂衰变谱的核素。