当前位置:文档之家› 2021高考数学二轮复习专题练大题每日一题规范练第二周含解析

2021高考数学二轮复习专题练大题每日一题规范练第二周含解析

2021高考数学二轮复习专题练大题每日一题规范练第二周含解析
2021高考数学二轮复习专题练大题每日一题规范练第二周含解析

大题每日一题规范练

星期一(三角) 2021年____月____日

【题目1】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,在①(a +b )(sin A -sin B )=(c -b )sin C , ②b sin

B +C

2

=a sin B ,

③cos 2A -3cos(B +C )=1这三个条件中任选一个解答下列问题: (1)求A 的大小; (2)若△ABC 的面积S =5

3,b =5,求sin B sin C 值.

(注:如果选择多个条件分别解答,按第一个解答计分) 解 选择①.

(1)由正弦定理,得(a +b )(a -b )=(c -b )c , 即a 2-b 2=c 2-bc . 由余弦定理,得cos A =b 2+c 2-a 22bc

=1

2

. ∵0

3.

(2)由S =1

2

bc sin A =5

3,b =5,A =π

3

,得c =4.

由余弦定理,得a 2=b 2+c 2-2bc cos A =21.

由正弦定理,得a

sin A =2R (R 为△ABC 的外接圆的半径),

∴(2R )2=

? ??

??a sin A 2=28, ∴sin B sin C =bc

(2R )2=5

7.

选择②.

(1)由正弦定理,得sin B sin B +C

2

=sin A sin B .

∵sin B ≠0,A +B +C =π,

∴sin ? ??

??π2-A 2=sin A ,即cos A 2=2sin A 2cos A 2.

又cos A 2≠0,∴sin A 2=1

2

.

∵0

6,即A =π

3.

(2)由S =1

2

bc sin A =5

3,b =5,A =π

3

,得c =4.

由余弦定理,得a 2=b 2+c 2-2bc cos A =21.

由正弦定理,得a

sin A

=2R (R 为△ABC 的外接圆的半径),

∴(2R )2=? ??

??a sin A 2

=28, ∴sin B sin C =bc

(2R )2=5

7.

选择③.

(1)由cos 2A -3cos(B +C )=1,A +B +C =π, 得2cos 2A +3cos A -2=0.

解得cos A =1

2或cos A =-2(舍去).

∵0

3.

(2)由S =1

2

bc sin A =5

3,b =5,A =π

3

,得c =4.

由余弦定理,得a 2=b 2+c 2-2bc cos A =21.

由正弦定理,得a

sin A =2R (R 为△ABC 的外接圆的半径),

∴(2R )2=

? ??

??a sin A 2=28, ∴sin B sin C =bc

(2R )2=5

7

.

星期二(数列) 2021年____月____日

【题目2】 已知数列{a n }的前n 项和S n =2n +1-2,记b n =a n S n (n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和T n . 解 (1)∵S n =2n +1-2.

∴当n =1时,a 1=S 1=21+1-2=2. 当n ≥2时,a n =S n -S n -1=2n +1-2n =2n , 又a 1=2=21适合上式, 故a n =2n (n ∈N *).

(2)由(1)知b n =a n S n =2n (2n +1-2)=2·4n -2n +1. ∴T n =b 1+b 2+b 3+…+b n

=2(4+42+…+4n )-(22+23+…+2n +1)

=2×4(1-4n )1-4-4(1-2n )1-2=23·4n +1-2n +2+4

3

.

星期三(概率与统计) 2021年____月____日

【题目3】 第24届冬奥会将于2022年在中国北京和张家口举行.为宣传冬奥会,让更多的人了解、喜爱冰雪项目,某大学举办了冬奥会知识竞赛,并从中随机抽取了100名学生的成绩,绘制成如图所示的频率分布直方图:

(1)试根据频率分布直方图估计这100人的平均成绩(同一组数据用该组区间的中点值代替); (2)若采用分层抽样的方法从成绩在[70,80),[80,90),[90,100]的学生中共抽取6人,再将其随机地分配到3个社区开展冬奥会宣传活动(每个社区2人),求“成绩在同一区间的学生分配到不同社区”的概率.

解 (1)平均成绩x -

=0.02×45+0.16×55+0.22×65+0.30×75+0.20×85+0.10×95=73.00.

(2)由题意知,从成绩在[70,80),[80,90),[90,100]的学生中分别选取了3人,2人,1人.

6人平均分成3组分配到3个社区,共有C 26C 24=90(种)方法. 成绩在同一区间的学生分配到不同社区的方法有A 33A 23=36(种),

所以“成绩在同一区间的学生分配到不同社区”的概率p =3690=2

5

.

星期四(立体几何) 2021年____月____日

【题目4】 如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,PA =PD ,∠DAB =60°.

(1)证明:AD⊥PB;

(2)若PB=6,AB=PA=2,求直线PB与平面PDC所成角的正弦值.

(1)证明取AD的中点为O,连接PO,BO,BD,如图1,

图1

∵底面ABCD是菱形,且∠DAB=60°,

∴△ABD是等边三角形,

∴BO⊥AD.

又PA=PD,即△PAD是等腰三角形,∴PO⊥AD.

又PO∩BO=O,PO,BO?平面PBO,∴AD⊥平面PBO,

又PB?平面PBO,∴AD⊥PB.

(2)解∵AB=PA=2,

∴由(1)知△PAD,△ABD均是边长为2的正三角形,

则PO=3,BO=3,又PB=6,

∴PO2+BO2=PB2,即PO⊥BO,

又由(1)知,BO⊥AD,PO⊥AD,

∴以O为坐标原点,OA,OB,OP所在直线分别为x,y,z轴建立如图2所示的空间直角坐标系.

图2

则D (-1,0,0),P (0,0,3),C (-2,

3,0),B (0,3,0),

PB →

=(0,3,-3),DP →

=(1,0,3),CD →

=(1,-3,0).

设n =(x ,y ,z )是平面PCD 的法向量,则???n ·DP

=0,n ·CD →

=0,

∴?????x +3z =0,x -3y =0,

取y =1,解得?????x =3,z =-1,

即n =(

3,1,-1)为平面PCD 的一个法向量.

设直线PB 与平面PDC 所成的角为θ, 则sin θ=|cos 〈PB →

,n 〉|=

|0×

3+

3×1+(-

3)×(-1)|

5

=105

∴直线PB 与平面PDC 所成角的正弦值为10

5

.

星期五(解析几何) 2021年____月____日

【题目5】 已知定点A (-3,0),B (3,0),直线AM ,BM 相交于点M ,且它们的斜率之积为-1

9,记动点M 的轨迹为曲线C .

(1)求曲线C 的方程;

(2)过点T (1,0)的直线l 与曲线C 交于P ,Q 两点,是否存在定点S (x 0,0),使得直线SP 与

SQ 斜率之积为定值?若存在,求出S 的坐标;若不存在,请说明理由.

解 (1)设动点M (x ,y ),则直线MA 的斜率k MA =

y

x +3

(x ≠-3),

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高考数学大题经典习题

高考数学大题经典习题公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1. 对于函数()321 (2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()321 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 因为()f x 的图像上每一点的切线的斜率不超过22sin cos t t t -+ 所以()2'2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故22sin cos 1t t t -≥ (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2'(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤

从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=23)((0>a )的图象关于原点对称,))(,(ααf A 、))(,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f . (Ⅰ)求b 的值; (Ⅱ)求函数)(x f 的解析式; (Ⅲ)若m m x f x 6 )(],1,2[- >-∈恒成立,求实数m 的取值范围. 2. (Ⅰ) b =0 (Ⅱ)3'2()()30,f x ax cx f x ax c αβ =+∴=+=的两实根是 则 03c a αβαβ+=????=?? |AB|=2222()()()()4()2f f αβαβαβ?-+-=?-= 又0 1a a >∴= 3()3 2 x f x x =- (Ⅲ) [2,1]x ∈-时,求()f x 的最小值是-5 3. 已知()d cx bx ax x f +++=23是定义在R 上的函数,其图象交x 轴于A ,B ,C 三点,若点 B 的坐标为(2,0),且()x f 在]0,1[-和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.

2014年全国大纲卷高考理科数学试题真题含答案

2014年普通高等学校统一考试(大纲) 理科 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设103i z i =+,则z 的共轭复数为 ( ) A .13i -+ B .13i -- C .13i + D .13i - 【答案】D . 2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N = ( ) A .(0,4] B .[0,4) C .[1,0)- D .(1,0]- 【答案】B. 3.设sin33,cos55,tan35,a b c =?=?=?则 ( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 【答案】C . 4.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( ) A .2 B C .1 D . 2 【答案】B . 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种 【答案】C .

6.已知椭圆C :22 221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的 直线l 交C 于A 、B 两点,若1AF B ?的周长为C 的方程为 ( ) A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 【答案】A . 7.曲线1x y xe -=在点(1,1)处切线的斜率等于 ( ) A .2e B .e C .2 D .1 【答案】C . 8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814 π B .16π C .9π D .274π 【答案】A . 9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则 21cos AF F ∠=( ) A .14 B .13 C .4 D .3 【答案】A . 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( ) A .6 B .5 C .4 D .3 【答案】C . 11.已知二面角l αβ--为60?,AB α?,AB l ⊥,A 为垂足,CD β?,C l ∈,135ACD ∠=?,则异面直线AB 与CD 所成角的余弦值为 ( )

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

2018江苏高考数学试题及答案解析

2018年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 . 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<- +=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条渐近线的距离为

c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()() 15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最 小值的和为 . 12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与 直线l 交于另一点D .若0=?,则点A 的横坐标为 . 13.在ABC ?中,角C B A 、、所对的边分别为c b a 、、,ο 120=∠ABC ,ABC ∠的平分线交AC 于点D , 且1=BD ,则c a +4的最小值为 . 14.已知集合{ }* ∈-==N n n x x A ,12|,{}* ∈==N n x x B n ,2|.将B A ?的所有元素从小到大依次排 列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

2020最新高考数学综合练习题含解答

一、填空题(本大题共14小题,每小题5分,共70分,把答案填 在题中横线上) 1.复数i 1+2i (i 是虚数单位)的实部是________. 解析:因为i 1+2i =i(1-2i)5=25+i 5,所以复数i 1+2i (i 是虚数单位)的实部是2 5. 答案:2 5 2.执行如图所示的程序框图,若p =4,则输出的s =________. 解析:由程序框图知s =12+14+18+116=15 16 .

答案:1516 3.观察下表的第一列,填空: 答案:(b1bn)n 2 4.复数z =(1+i)2 1-i 对应的点在第________象限. 解析:z =(1+i)21-i =2i 1-i =-1+i ,其对应的点的坐标为(-1,1),所以点在第二 象限. 答案:二 5.设0<θ<π 2,已知a1=2cosθ,an +1= 2+an (n∈N+),猜想an = ________. 解析:因为0<θ<π2,所以a2=2+2cosθ=2cos θ 2 ,

a3= 2+2cos θ2=2cos θ 4 ,a4= 2+2cos θ4=2cos θ 8 , 于是猜想an =2cos θ 2n -1(n∈N+). 答案:2cos θ 2n -1 6.根据下面一组等式: S1=1, S2=2+3=5, S3=4+5+6=15, S4=7+8+9+10=34, S5=11+12+13+14+15=65, S6=16+17+18+19+20+21=111. 可得S1+S3+S5+…+S2n -1=________. 解析:从已知数表得S1=1,S1+S3=16=24,S1+S3+S5=81=34,从而猜想S1+S3+…+S2n -1=n4. 答案:n4 7.复数5 3+4i 的共轭复数是________. 解析:因为5 3+4i =5(3-4i) (3+4i)(3-4i)=3-4i 5,所以其共轭复数为35+ 4 5 i.

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

(完整)2019-2020年高考数学大题综合练习(二)

2019-2020年高考数学大题综合练习(二) 1.已知函数22()2sin 2sin ()6 f x x x π=--,x R ∈. (1)求函数()y f x =的对称中心; (2)已知在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且( )262B b c f a π++=,ABC ? 的外接圆半径为△ABC 周长的最大值. 【解析】 ()1cos 21cos 2()cos(2)cos 263f x x x x x ππ??=----=--????1cos 2sin 2cos 222x x x =+- 12cos 2sin(2)26 x x x π=-=-. (1)令26x k π π-=(k Z ∈),则212 k x ππ=+(k Z ∈), 所以函数()y f x =的对称中心为(,0)212 k ππ+k Z ∈; (2)由()262B b c f a π++=,得sin()62b c B a π++=1cos 22b c B B a ++=, sin cos B a B b c +=+, sin sin cos sin sin A B A B B C +=+, sin sin cos sin A B B A B =+,又因为sin 0B ≠, cos 1A A -=,即1sin()62A π- =, 由0A π<<,得5666A πππ- <-<, 所以66A π π -=,即3A π =, 又ABC ?3a A ==, 由余弦定理得2222222cos ()3a b c bc A b c bc b c bc =+-=+-=+-2 2 23()()()44b c b c b c +≥+-+=,即6b c +≤, 当且仅当b c =时取等号, 所以周长的最大值为9.

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

数学高考大题题型归纳必考

数学高考大题题型归纳必考题型例题

数学高考大题题型归纳必考题型例题 1数学高考大题题型有哪些 必做题: 1.三角函数或数列(必修4,必修5) 2.立体几何(必修2) 3.统计与概率(必修3和选修2-3) 4.解析几何(选修2-1) 5.函数与导数(必修1和选修2-2) 选做题: 1.平面几何证明(选修4-1) 2.坐标系与参数方程(选修4-4) 3.不等式(选修4-5) 2数学高考大题题型归纳 一、三角函数或数列 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 二、立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高考数学七大必考专题(最新)

高考数学七大必考专题 专题1:函数与不等式,以函数为主线,不等式和函数综合题型是考点 函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。 一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。 不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。 专题2:数列 以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。 专题3:三角函数,平面向量,解三角形 三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。 专题4:立体几何 立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。 另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。 专题5:解析几何

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

相关主题
文本预览
相关文档 最新文档