拉格朗日方程的应用及举例08讲
- 格式:doc
- 大小:672.50 KB
- 文档页数:12
动力学中的拉格朗日方程在物理学和工程学中,拉格朗日方程是描述系统动力学的重要工具。
拉格朗日方程由法国数学家和物理学家约瑟夫·拉格朗日于18世纪提出,它能够将系统的动力学问题转化为一组方程,进而方便地求解系统的运动规律。
本文将介绍拉格朗日方程在动力学中的应用,以及其原理和推导方法。
一、拉格朗日方程的原理拉格朗日方程是从一种被称为“拉格朗日力学”的理论体系中得出的。
在拉格朗日力学中,系统的运动被描述为一种能量的变化过程。
拉格朗日方程的原理是基于系统的动能和势能的概念。
系统的动能可以用质点的质量和速度来表示,而势能则是系统中各个物体相对于某一参考点的位置所具有的能量。
根据能量守恒定律,系统的总能量在运动过程中保持不变。
拉格朗日方程的基本思想是,系统的动能和势能之间存在一种函数关系,称为拉格朗日函数。
通过对拉格朗日函数求取变量的极值,可以得到系统的运动方程。
这就是拉格朗日方程的原理。
二、拉格朗日方程的推导方法要推导拉格朗日方程,需要首先确定系统的拉格朗日函数。
拉格朗日函数可表示为系统的动能与势能之间的差异。
以单个质点为例,其拉格朗日函数可表示为L = T - V,其中T为动能,V为势能。
对于多个质点构成的系统,拉格朗日函数的表达式包含了各个质点的动能和相互作用势能。
然后,通过对拉格朗日函数对各个质点的运动变量求取变分,可以得到相应的运动方程,即拉格朗日方程。
三、拉格朗日方程的应用拉格朗日方程在经典力学和动力学中有广泛的应用。
它可以用于描述各种复杂力学系统的运动,如振动系统、弹性体、刚体等。
通过求解拉格朗日方程,可以精确地得到系统的运动规律,并且相较于牛顿力学的方法,具有更加简洁明了的形式。
在求解拉格朗日方程时,一种常见的方法是利用拉格朗日方程的守恒量。
当系统具有某些对称性时,拉格朗日方程会出现某些守恒量,如动量、角动量等。
这些守恒量能够更加简化运动方程的求解过程,并提供对系统运动性质的重要信息。
拉格朗日运动方程一、引言拉格朗日运动方程是经典力学中描述物体运动的重要工具,它是由法国数学家拉格朗日在18世纪提出的。
它与牛顿运动定律等价,但更加优美和普适,适用于各种力学问题。
二、拉格朗日函数拉格朗日函数是描述系统能量的函数,通常用L表示。
对于一个系统而言,其拉格朗日函数可以表示为:L = T - V其中T表示系统的动能,V表示系统的势能。
这个式子代表了系统总能量E=T+V。
三、广义坐标广义坐标是描述物体位置的变量,在使用拉格朗日方程时非常重要。
广义坐标可以是任意数量和类型的变量,例如位置、角度、长度等。
四、拉格朗日方程拉格朗日方程可以用来描述物体在给定势场中的运动。
它基于最小作用原理(Hamilton原理),即物体在两个时间点之间所经过的路径应该是使作用量最小化(或者称为稳定作用量)。
对于一个具有n个自由度(即n个广义坐标)的系统而言,其拉格朗日方程可以表示为:d/dt(dL/dq_i) - dL/dq_i = Q_i其中q_i表示第i个广义坐标,Q_i表示与该广义坐标相关的外力。
这个方程可以通过对系统能量的变化率进行求导得到。
五、应用举例1. 简谐振动简谐振动是物理学中最基本的振动形式之一,它可以通过拉格朗日方程来描述。
对于一个单摆而言,其拉格朗日函数可以表示为:L = 1/2m(l^2θ'^2 + gcosθ)其中m是单摆的质量,l是单摆的长度,θ是单摆的角度,g是重力加速度。
代入拉格朗日方程中可得到单摆运动的解析式。
2. 力学中的应用在力学中,拉格朗日方程被广泛应用于各种问题中。
例如弹性碰撞、刚体运动、万有引力等问题都可以使用拉格朗日方程来描述。
六、总结拉格朗日运动方程是经典力学中非常重要和实用的工具,它通过最小作用原理和系统能量来描述物体在给定势场中的运动。
在实际应用中,我们可以使用广义坐标和拉格朗日函数来构建拉格朗日方程,并通过求解该方程来得到物体运动的解析式。
理论力学中的拉格朗日方程在理论力学中,拉格朗日方程是一种重要的数学工具,用于描述系统的运动行为和力学规律。
拉格朗日方程由意大利数学家和物理学家约瑟夫·拉格朗日于18世纪提出,被广泛应用于经典力学的各个领域。
1. 拉格朗日方程的引入拉格朗日方程的引入是为了解决在复杂的力学系统中,尤其是多体系统中,求解运动方程困难的问题。
拉格朗日方程通过引入广义坐标和广义速度的概念,将原来的N个质点受力问题转化为2N个一阶偏微分方程组的求解问题。
2. 广义坐标和广义速度在拉格朗日方程中,将系统的坐标由笛卡尔坐标系转化为广义坐标系,这样可以更好地描述系统的自由度。
广义坐标的数目等于系统的自由度,它们可以用来完全描述系统的构型。
广义速度则是对广义坐标的时间导数,表示系统的运动状态。
3. 拉格朗日量在拉格朗日力学中,拉格朗日量是一个以广义坐标、广义速度和时间为变量的函数,代表系统的能量和动力学性质。
拉格朗日量可以通过系统的动能和势能函数得到。
对于自由度为n的系统,拉格朗日量可以表示为L(q, q', t),其中q表示广义坐标,q'表示广义速度,t表示时间。
4. 欧拉-拉格朗日方程欧拉-拉格朗日方程是拉格朗日方程的数学形式,它由拉格朗日原理引出。
欧拉-拉格朗日方程可以描述系统在运动过程中的动力学规律。
它可以表示为d/dt(dL/dq') - dL/dq = 0,其中d/dt表示对时间求导数。
通过求解这个方程组,我们可以得到系统的运动方程。
5. 应用与例子拉格朗日方程在经典力学中的应用非常广泛。
例如,它可以用于求解刚体的运动,弹性体的振动,以及受约束的质点系等问题。
通过将系统的动能和势能函数表示为广义坐标和广义速度的函数,可以得到相应的拉格朗日量,进而求解运动方程。
总结:拉格朗日方程是一种在理论力学中广泛应用的工具,用于描述系统的运动行为和力学规律。
它通过引入广义坐标和广义速度的概念,将系统的受力问题转化为求解一阶偏微分方程的问题。
拉格朗日定理的应用拉格朗日定理是微积分中的一个重要定理,它在数学、物理、经济学等领域都有广泛的应用。
本文将介绍拉格朗日定理的应用,并举例说明其在实际问题中的作用。
拉格朗日定理是指:如果函数f(x)在区间[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点c,使得f(b)-f(a)=f'(c)(b-a)。
这个定理的意义是:在一个区间内,如果函数在两个端点的函数值相等,那么在这个区间内至少存在一个点,使得函数的导数在这个点上等于函数在两个端点的函数值之差除以区间长度。
拉格朗日定理的应用非常广泛,下面我们将介绍一些常见的应用。
1. 求函数的最大值和最小值如果一个函数在一个区间内连续且可导,那么可以使用拉格朗日定理来求函数的最大值和最小值。
具体方法是:先求出函数的导数,然后令导数等于0,解出导数为0的点,再将这些点代入原函数中,求出函数在这些点上的函数值,最后比较这些函数值,就可以得到函数的最大值和最小值。
2. 求曲线的切线和法线如果一个曲线在某一点处可导,那么可以使用拉格朗日定理来求出曲线在这一点处的切线和法线。
具体方法是:先求出曲线在这一点处的导数,然后求出导数的斜率,这个斜率就是切线的斜率。
法线的斜率是切线斜率的相反数,因此可以用切线斜率的相反数来求出法线的斜率。
3. 求解微分方程微分方程是数学中的一个重要分支,它在物理、工程、经济学等领域都有广泛的应用。
如果一个微分方程可以化为y'=f(x,y)的形式,那么可以使用拉格朗日定理来求解这个微分方程。
具体方法是:将微分方程化为y'-f(x,y)=0的形式,然后令g(x,y)=y'-f(x,y),这样就可以将微分方程转化为一个一阶偏微分方程。
然后使用拉格朗日定理来求解这个偏微分方程,最后再将解代入原微分方程中,就可以得到微分方程的解。
4. 求解优化问题优化问题是数学中的一个重要分支,它在经济学、工程学、管理学等领域都有广泛的应用。
拉格朗日乘子法与拉格朗日方程拉格朗日乘子法与拉格朗日方程是应用数学中的两个重要概念,它们在优化问题和动力学中扮演着重要角色。
在本文中,我将深入探讨这两个概念的内涵和应用,帮助你更好地理解它们的意义和作用。
1. 拉格朗日乘子法的基本原理拉格朗日乘子法是一种数学工具,用于求解有等式约束的极值问题。
举例来说,当我们需要求一个函数在一些限制条件下的最大值或最小值时,拉格朗日乘子法可以帮助我们有效地解决这一问题。
具体来说,对于一个约束优化问题:\[ \max_{x} f(x) \]\[ s.t. g(x) = c \]其中,f(x)是我们需要优化的目标函数,g(x) = c表示约束条件。
使用拉格朗日乘子法,我们可以构建拉格朗日函数:\[ L(x, \lambda) = f(x) + \lambda(g(x) - c) \]其中,\(\lambda\)就是所谓的拉格朗日乘子。
通过对拉格朗日函数求偏导数,并令偏导数等于零,我们可以得到关于x和\(\lambda\)的方程,进而求解出最优解。
2. 拉格朗日方程的应用拉格朗日方程是描述一个动力学系统的经典物理学方程。
它可以从作用量原理出发推导得到,是描述系统运动方程的一种极其优美的形式。
具体而言,对于一个由广义坐标q和广义速度\(\dot{q}\)描述的动力学系统,它的拉格朗日函数可以表示为:\[ L(q, \dot{q}, t) = T - V \]其中,T代表系统的动能,V代表系统的势能。
根据欧拉-拉格朗日方程,我们可以得到系统的运动方程:\[ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) -\frac{\partial L}{\partial q} = 0 \]3. 个人观点和理解拉格朗日乘子法和拉格朗日方程都是非常有用的数学工具,它们在实际问题中的应用非常广泛。
在工程优化、经济学建模、物理学等领域,这两个工具都扮演着重要的角色。
第二章 用拉格朗日方程建立系统的数学模型§2.1概述拉格朗日方程——属于能量法,推导中使用标量,直接对整个系统建模 特点:列式简洁、考虑全面、建模容易、过程规范适合于线性系统也适合于非线性系统,适合于保守系统,也适合于非保守系统。
§2.2拉格朗日方程1. 哈密尔顿原理 系统总动能),,,,,,,(321321N n q q q qq q q q T T = (2-1)系统总势能),,,,(321t q q q q U U N =(2-2)非保守力的虚功N N nc q Q q Q q Q W δδδδ ++=2211(2-3)哈密尔顿原理的数学描述:0)(2121=+-⎰⎰t t nc t t dt W dt U T δδ (2-4)2. 拉格朗日方程: 拉格朗日方程的表达式:),3,2,1()(N i Q q Uq T q T dt d iii i ==∂∂+∂∂-∂∂ (2-5)(推导:)将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变分驻值原理),有0)(221122112211221121=+++∂∂-∂∂-∂∂-∂∂++∂∂+∂∂+∂∂+∂∂+∂∂⎰dt q Q q Q q Q q q Tq q U q q U q qTq q T q q T q q T q q T q q T N N N NN N N N t t δδδδδδδδδδδδ (2-6)利用分步积分dt q q Tdt d q qT dt q q T i t t i t t i i i t t i δδδ⎰⎰∂∂-∂∂=∂∂212121)(][ (2-7)并注意到端点不变分(端点变分为零)0)()(21==t q t q i i δδ (2-8)故dt q q T dt d dt q qTi i t t i t t i δδ)(2121∂∂-=∂∂⎰⎰(2-9)从而有0)])([211=+∂∂-∂∂+∂∂-⎰∑=dt q Q q Uq T q T dt d i i it t i i Ni δ ( (2-10)由变分学原理的基本引理:(设 n 维向量函数M(t),在区间],[0f t t 内处处连续,在],[0f t t 内具有二阶连续导数,在f t t ,0处为零,并对任意选取的n 维向量函数)(t η,有⎰=ft t T dt t M t 00)()(η则在整个区间],[0f t t 内,有 0)(≡t M )我们可以得到:0)(=+∂∂-∂∂+∂∂-i ii i Q q U q T q T dt d (2-11)即i ii i Q q U q T q T dt d =∂∂+∂∂-∂∂)( (2-12)对非保守系统,阻尼力是一种典型的非保守力,如果采用线性粘性阻尼模型,则阻尼力与广义速度}{q成正比,在这种情况下,可引入瑞利耗散(耗能)函数D ,}]{[}{21q C q D T≡ (2-13) 阻尼力产生的广义非保守力为:i i qDQ ∂∂-= (2-14) 对于仅受有势力和线性阻尼力作用的系统,其拉格朗日方程为:0)(=∂∂+∂∂+∂∂-∂∂qD q U q T q T dt d i i i (2-15) 如果系统上还作用了除有势力和阻尼力以外的非保守力,如结构受到的外激励力(对应的广义非保守力可通过非保守力的虚功求得,仍记为i Q ),则系统的拉格朗日方程为:i i i i Q qD q U q T q T dt d =∂∂+∂∂+∂∂-∂∂ )( (2-16) §2.3 拉格朗日方程在振动系统建模中应用在某些结构振动问题中,取分离体、确定各分离体的受力情况,然后利用牛顿第二定律建立方程的方法不一定可用,或者很不方便,这时,采用拉格朗日方程来建立振动方程就很方便。
拉格朗日方程的应用及举例拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n个方程,是一个包含n个二阶常微分方程组,方程组的阶数为2n。
求解这个方程组可得到以广义坐标描述的系统运动方程。
(2)拉格朗日方程的形式具有不变性。
对于任意坐标具有统一的形式,即不随坐标的选取而变化。
特别是解题时有径直的程序可循,应用方便。
(3)所有的理想约束的约束反力均不出现在运动微分方程中。
系统的约束条件愈多,这个特点带来的便利越突出。
(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。
(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。
纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。
我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。
我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。
应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q 和广义速度q 表示的动能函数和广义力Q。
为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。
一、动能的计算对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。
在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。
例1-1 已知质量为m ,半径为r 的均质圆盘D ,沿OAB 直角曲杆的AB 段只滚不滑。
圆盘的盘面和曲杆均放置在水平面上。
已知曲杆以匀角速度1绕通过O 点的铅直轴转动,试求圆盘的动能。
解:取广义坐标x 和,x 为圆盘与曲杆接触点到曲杆A 点的距离,为曲杆OAB 的转角, = 1t 。
应用柯尼希定理求圆盘的动能。
为此,先求圆盘质心C 的速度和相对于质心平动坐标系的角速度。
若以曲杆OAB 为动参考系,C 为动点,21221e r ,,ωυωυυx x x xC +=== 再应用刚体绕二平行轴转动的合成方法,圆盘的角速度为rx-=1ωω 于是圆盘的动能为212212241)(21⎪⎭⎫ ⎝⎛-++=r x mr x x m T ωω 若将动能表达式展开,得到2122211241212143ωωωmr x m x mr x m T ++-=可以看出,圆盘的动能包含广义速度x的二次项,广义速度x 的一次项和它的零次项。
二、广义力的计算概括地说,广义力有三种计算方法: 1)根据广义力的定义,有N j q z F q y F q x F Q i i iz i i iy j i iz Ni j ,,2,11=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∑=我们可以按照这个公式来计算,但是,有时计算是繁冗的。
2)我们知道,作用在系统上的诸主动力对于任何虚位移元功之和等于诸广义力对于相应的广义坐标的虚位移元功之和,即jjni i iNi qQ δδ11∑∑===⋅r F对于完整系统,广义坐标的变分q 1,q 2,…,q n 是彼此独立的。
若给出某一广义坐标的变分为q j ,而令其它坐标变分均为零,即q j ≠0,q 1 = q 2 = … = q j -1 = q j +1 = … = q n = 0则上式为j j i iNi q Q δδ1⋅=⋅∑=r F于是n j q Q jiiNi j ,,2,1,δδ1=⋅=∑=rF由于系统的主动力在给定的虚位移中元功之和i i Ni r F δ1⋅∑=的计算是我们熟悉的,则广义力Q j 可较易地计算出。
依次给出不同序数的坐标变分的同时,令其它坐标变分为零,则可依次计算出与广义坐标对应的广义力。
这种方法是我们经常应用的。
3)若作用于系统上的主动力有势,则通过势能函数即可求出广义力。
设势能函数为V ,则可应用式jj q VQ ∂∂-= 进行广义力的计算。
例1-3 均质杆OA 和AB 在A 点铰链连接,并在O 点用铰链支承。
杆重分别为P 1和P 2,F 1为作用于B 点的水平力,试求对应于和的广义力。
解:系统具有两个自由度。
依题意,取和为广义坐标,对应于和的广义力以Q 和Q 表示。
于是,ψψϕϕψϕψψϕϕψϕϕϕϕδsin 2δcos 2δsin 2sin 2δsin δsin 2δcos cos 2δsin δcos b a x b a x b a y b a y a y a y B B D D C C +=+=--=+=-== 当获得变分,而保持不变,即 = 0时,ϕϕϕϕϕϕϕϕϕsin 2sin cos 2δδδ)sin 2sin cos 2()δδδ(δδ21112111P a P a F C A Q a P a P a F z Z y Y xX A i i i i i iiNi --==--=++=⋅∑=∑=r F当获得变分,而 = 0时,ψψψψψψψψsin cos 2δδδsin δcos 2δδ212212b P b F A Q b P b F A -==-=⋅∑=rF三、拉格朗日方程的应用应用拉格朗日方程建立系统的动力学方程时,一般采用以下步骤:1)分析系统的约束条件,判断系统的类型是否为完整系统,是定常还是非定常的,是保守的还是非保守的。
2)若系统为完整的,在确定其自由度数目后,选择恰当的广义坐标。
3)计算出以广义速度表达的动能T (q ,q ,t )、势能V (q ,t ) 或广义力Q (q ,t ),若主动力有势,计算出拉格朗日函数L (q ,q ,t )。
4)列出拉格朗日方程。
例1-4 半径为R 、质量为m 的圆环挂在一半径为r 的固定圆柱上。
设圆环与圆柱间有足够大的摩擦力阻止相对滑动,试写出圆环的运动微分方程,并求微幅摆动的周期。
解:圆环具有一个自由度,是完整系统。
取为广义坐标,圆环的动能为222121ωO O J mv T +=其中O O r R v θ )(-=,瞬心为A ,则θωRr R R v O -==于是22222222)()(21)(21θθθ r R m Rr R mR r R m T -=-+-= 主动力有势,系统的势能为V =-mg (R -r ) cosθθθθθθθsin )(0)(2d d )(222r R mg VT r R m T t r R m T-=∂∂=∂∂-=⎪⎭⎫ ⎝⎛∂∂-=∂∂ 代入拉格朗日方程,得到系统的动力学方程:0sin )()(22=-+-θθr R mg r R m 即0sin )(2=+-θθg r R 考虑到微幅,有0)(2=-+θθθR g周期为gr R )2(π2-=τ 由于主动力有势,可以写出拉格朗日函数:θθcos )()(22r R mg r R m V T L ---=-= 代入式(1-25)中同样可以得到系统的动力学方程。
2. 已知摆线绕在固定圆柱上,尺寸如图;求此摆的运动微分方程。
解 这是单自由度保守系统,选为广义坐标,选 = 0为系统的零势能位置,则]cos )()sin [()(2122θθθθθR l R l mg V R l m T +-+=+=将T 、V 代入保守系统的拉格朗日方程θθθ∂∂=∂∂-⎪⎭⎫ ⎝⎛∂∂VT T t d d或将拉格朗日函数L = T V 代入如下形式的拉格朗日方程0d d =∂∂-⎪⎭⎫ ⎝⎛∂∂θθLL t 皆可得运动微分方程0sin )(2=+++θθθθg R R l 3. 已知三均质齿轮,半径皆为r ,质量都是m ,此机构位于水平面内,若无重系杆受矩为M 的力偶作用;求系杆的角加速度。
解 这是单自由度非保守系统,选系杆的转角为广义坐标,则有关的角速度和速度为,24,2,3232==⋅=⋅==ωωωωωϕωr v r v O O该系统的广义力为 Q = M动能为2223222221121212121ωωmr mv mr mv T O O =+⋅+=代入拉格朗日方程ϕϕϕQ TT t =∂∂-⎪⎪⎭⎫ ⎝⎛∂∂ d d得222mr M==ωα例1-9 试求例1-1中圆盘的运动微分方程。
又,若t = 0时,x = 10cm ,x= 0,求当x =20cm 时,x 为多少 例1-1 已知质量为m ,半径为r 的均质圆盘D ,沿OAB 直角曲杆的AB 段只滚不滑。
圆盘的盘面和曲杆均放置在水平面上。
已知曲杆以匀角速度1绕通过O 点的铅直轴转动,试求圆盘的动能。
解:由例1-1已求得动能T 为212212241)(21⎪⎭⎫ ⎝⎛-++=r xmr x x m T ωω 水平台为零势面,则圆盘的势能为V = 0系统的拉格朗日函数L 为x m xLx m x m x m x L t r x mr x m x L r x mr x x m T L 2112122122,2321d d 2141)(21ωωωω=∂∂=+=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛--=∂∂⎪⎭⎫ ⎝⎛-++==代入拉格朗日方程,有02321=-x x ω由于系统是非定常的,虽然作用于圆盘上的主动力有势,但并不存在能量积分,由于拉格朗日函数L 不显含时间t ,系统有广义能量积分。
由动能表达式得到212221011224121,21,43ωωωmr x m T x mr T x m T +===圆盘的广义能量积分为 T 2-T 0 + V =常数.于是得到h mr x m x m =--2122212412143ωω 整理后,有122122143h x m x m =-ω 当t = 0时,x 0 = 10cm ,0x= 0,则 21150ωm h -=于是有212212502143ωω-=-x x 当x = 20cm 时,212200ω=x11.14ω=xcm/s 例9 质量为m ,半径为r 的圆环O 竖立在一粗糙平面上。
圆环的边缘上刚连一质量为m 的质点A 。
试写出系统的运动微分方程。
解:由圆环O 和质点A 组成的系统只能在地面上作纯滚动,自由度为1,取OA 与铅垂线的夹角ϕ为广义坐标,以系统为研究对象, O 点处水平面为零势能面,则系统的动能和势能分别为[]22222222222)cos 2(cos )(2)()(21)(2121212121ϕϕϕϕϕϕϕϕϕ -=-+++=++=mr r r r m r m mr mv mv J T AO O ϕcos mgr V -=于是有ϕϕϕsin mgr V Q -=∂∂-=代入拉格朗日方程,导出0sin )()cos 2(22=++-ϕϕϕϕr g例1-7 三角楔块A 可沿水平光滑面作直线运动,楔块A 的质量为m 1,其上受有简谐力F =H sin t 的作用(H 和均为常量)。