第四章_半导体的导电性(1)剖析

  • 格式:ppt
  • 大小:2.40 MB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于本征半导体(n=p=ni),则电导率为:
i n i q n + p
16
4.2.2 载流子的散射
载流子散射的根本原因:
周期性势场被破坏。
晶格的周期性被破坏后,与周期性势场相比,存在一附加势场, 使能带中的电子发生不同k状态间的跃迁,即遭到散射:
v (k ) v (k ' )
6
4.1.2 半导体导电的宏观电流-欧姆定律的微分形式
实验表明,在电场不太大时,半导体中的电流与电压仍服从欧姆定律:
I
电阻为
U R
l R s

1
ρ为半导体的电阻率,单位为Ω·m 或Ω·cm 单位西门子/米(S/m或S/cm ) 电导率

J
电流密度:
dI ds
J
dI E ds
--------欧姆定律的微分形式
vd E
迁移率是半导体材料的重要参数,它表示电子或空穴在外电
场作用下作漂移运动的难易程度。
μn 和μp哪个大? μn >μp
电子是脱离共价键成为准自由运动的电子,而空穴实际上是
共价键上的电子在价键间的运动产生的效果,电子在价键间 移动的速度小于准自由的电子的运动速度。
14
4.2.1 漂移运动
迁移率与电导率
如何求证欧姆定律的微分形式?
7
4.1.2 半导体导电的宏观电流-欧姆定律的微分形式
当电场作用于半导体时,电子获得一个和外电场反向的平均速 度,用 v d 表示其大小,空穴则获得与电场同向的速度,用 表示其大小。
v
a
若只考虑电子的运动, 在dt时 间内通过ds的电荷量就是A、B 面间小柱体内的电子电量,即
载流子在外电场中的运动是热运
动和漂移运动的叠加。
外电场作用下电子的漂移运动
11
I nqvd 1 s
I J nqvd s
J E
J E nqvd
4.2.1 漂移运动 迁移率与电导率
J E nqvd
根据欧姆定律微分形式,J 跟 E 成正比,因此
温度和杂质浓度与散射次数的关系 电离杂质对载流子的散射概率:
pi NiT -3 2
20
4.2.2 载流子的散射
2)晶格振动散射
4.2.2 载流子的散射
22
4.2.2 载流子的散射
①声学波散射
室温下电子热运动速度约为105m/s,由hk=m*v可估计电子波波长约为:
vd E
令:
va E
vd n E
n
vd E
va p E
va p E
μ n和μ p分别称为电子迁移率和空穴迁移率。 物理意义:表示在单位场强下电子或空穴所获得的平均漂移速度大 小,单位为m2/V·s或cm2/ V·s.
13
4.2.1 漂移运动 迁移率与电导率
n源自文库
电子重新趋于对称分布,电流变为零,即存在电阻。
5
4.1.1 半导体导电的微观机理
2、从晶格角度理解半导体的导电性: 在一定温度下,共价键上的电子e挣脱了价键的束缚,进入到晶格
空间中成为准自由电子,这个电子在外电场的作用下运动而形成电
子电流. 在价键上的电子进入晶格后留下空 穴,当这个空穴被电子重新填充后, 会在另一位置产生新的空穴,这一 过程即形成空穴电流。 晶格中空穴和电子 导电示意图
J nqvd pqva
9
4.2 载流子的漂移运动、迁移率及散射机构
10
4.2.1 漂移运动 迁移率与电导率
半导体中的载流子在电场作用下不断加速的同时,又不断地受到散
射作用而改变其运动的方向或运动的速度,运动的总效果使其保持
一定的定向运动速度,载流子的这种运动称漂移运动,这个速度称 为平均漂移速度。
第四章 半导体的导电性
1
4.1
半导体的导电原理 4.1.1 半导体导电的微观机理
半导体在外电场作用下是否存在电流并不取决于 单个电子的行为,而是取决于整个晶体中所有电 子运动的总和。 1、从能带的角度理解半导体导电性: 满带: 在外加电场的作用下,电子从第一 布里渊区边界的一边流进,另一边流出。但
总漂移电流密度为:
J nqn +pqp E
与欧姆定律微分形式比较得
到半导体电导率表示式为:
nq n +pq p
电子和空穴的漂移运动
15
4.2.1 漂移运动
迁移率与电导率
对于n型半导体(n>>p),电导率为
nqn
对于p型半导体(p>>n),电导率为:
nqp
4
4.1.1 半导体导电的微观机理
当外电场除去后,因为:
dk x qE x dt
dk x 0 dt
电子在布里渊区的非对称分布不再变化,从而电流将保持下去。也就是
说,在外电场为零的情况下,电流仍不等于零。意味着电导率应为无穷大, 电阻率应为零。 实际晶体是不完整性,杂质、缺陷、晶格热振动将对电子产生散射,使
Q nqvd dtds
8
4.1.2 半导体导电的宏观电流-欧姆定律的微分形式
Q nqvd dtds
电流密度的定义:
J I / S dQ / dtds
J n nqvd
pq v a Jp
得电子对电流密度的贡献: 同理,空穴对电流的贡献:
同时考虑电子和空穴的贡献时,总电流密度为:
17
4.2.2 载流子的散射
晶格振动 电离杂质 产生附加势场 的原因 载流子 空位 中性杂质 位错
18
4.2.2 载流子的散射
散射几率(Pi):描述散射的强弱,它表示单位时间内一个载流 子受到散射的次数。
1)电离杂质散射----杂质电离产生库仑场
(a)电离施主散射 电离杂质散射示意图
19
4.2.2 载流子的散射
从而呈现出电流。
3
(b)E≠0
4.1.1 半导体导电的微观机理
理想的半导体:无限大的、既没有杂质和缺陷也没有晶格振动和电子间的 相互碰撞。 理想的半导体的电阻为零.
当能带只是部分填充时,在外电场作用下,所有电子波矢以相同速率变化:
qE x
dk x dt
从而使电子在布里渊区的分布不再对称,因而产生电流。
由于电子的状态是波矢的周期函数,波函数
在第一布里渊区边界两边的状态等价,总 体上不呈现电流。
2
4.1.1 半导体导电的微观机理
半满带:对被电子部分填充的能 带情况,电子对称地占据能量较 低的状态,如下图(a)所示,没有 外电场作用时不呈现出电流。
(a)E=0
当存在如下图(b)所示电场时,
电子在能带中的分布发生变化,