第四章_半导体的导电性(1)
- 格式:ppt
- 大小:2.40 MB
- 文档页数:90
第四章半导体的导电性本章主要内容载流子在外加电场作用下的漂移运动半导体的迁移率、电导率和电阻率随温度和杂质浓度的变化规律迁移率的本质-----散射4.1 载流子的漂移运动迁移率1、欧姆定律对于金属,电流I = V(电压)/R(电阻)V-I关系是直线对于半导体,流过不同截面的电流强度不一定相同,“即电流分布不均匀,而欧姆定律不能说明材料内部各处电流的分布情况。
电流密度:通过垂直于电流方向的单位面积的电流J = ∆I/∆S单位:A/cm2或A/m2欧姆定律微分形式:上式把通过导体中某一点的电流密度和该处的电导率及电场强度直接联系了起来。
S故: 半导体导电= 电子导电J = Jn + Jp = (nqu平均自由程:载流子在连续两次散射间自由运动的平均路程平均自由时间:载流子通过平均自由程所需的平均时间τ电场:载流子加速---定向运动;散射:载流子运动方向改变---杂乱无章,各个方向;半导体的主要散射机构:离化杂质散射晶格散射中性杂质散射位错散射(P为散射几率)起因:常温下,浅施主带正电• 双曲线,电离杂质处于一个焦点 • 速度小,作用时间长,偏离角θ大,τ小 • 弹性散射,不改变入射电子能量,只改变运动方向 τ ∝ T3/2/NI 杂质浓度(2)、晶格散射 晶格原子在其平衡位置附近不断进行热振动,且各个 原子的振动不是孤立的。
分析表明:晶格中原子的振动都 是由若干不同的基本波动按波的叠加原理组合而成,这些 基本波动称为格波。
q代表格波波矢, q 的方向即波的传播方向晶格散射:载流子在运动过程中遭受振动的晶格原子的散射, 失去在电场中获得的能量,失去动量。
在能带具有单一极值的半导体中 起主要散射作用的是长波。
即波 长比原子间距大很多倍的格波。
电子热运动速度~105m/s 电子波波长约10-8m 根据动量守恒要求,声子波长 范围应在同一量级,即10-8m,而 晶体中原子间距为10-10m,因而 起主要散射作用的是长波。
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102 V/m 、107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102 V/m 时,88.310t s -=⨯;当E = 107 V/m 时,138.310t s -=⨯。
第四章半导体的导电性
4.1 理论概要与重点分析
由于半导体的电阻率能用四探针法很方便地测量,所以常用它作为半导体的重要性能参量。
(3)由上可见,分析半导体的导电性,应从载流子浓度和迁移率两方面入手。
而载流子浓度问题在第3章中做了系统的讨论,在这里应用时,应全面考虑。
而迁移率的问题是本章的重点。
迁移率是载流子在晶体中运动时不断遭受到各种散射因素的作用决定的。
半导体中的主要散射机构是电离杂质散射和晶格振动散射。
而晶格振动散射又以长纵声学波和光学波的散射为主。
散射作用的强弱用散射概率p(或平均自由时间τ=1/p)来衡量,它表示单位时间内一个载流子遭受到散射的次数。
经分析,几
种主要的散射机构单独决定的散射概率与杂质浓度N
和温度T有如下的关系:
i
(5)半导体在外加电磁场的作用下,电子的分布函数要发生变化,稳态时分布函数的变化满足玻尔兹曼方程。
(6)在强电场作用下,载流子的平均漂移速度不再与电场强度成正比。
随着电场强度的增加,漂移速度的增加比线性变得缓慢,最后达到一个饱和值。
很显然,这时的迁移率变得与电场有关,这一物理现象可用热载流子与光学波的晶格散射概念予以解释。
(7)由于GaAs的导带具有多能谷结构,而最低能谷和次低能谷间的能量间隔较小,当电场强度达到一定程度时,最低能谷中电子从电场中获得能量后,使其与次低能谷的能量相当。
即会发生谷间散射,低能谷中的电子向高能谷中转移,且随电场强度的进一步增加,转移的电子越多,高能谷中电子的有效质量远大于
低能谷的有效质量,因而在这个区域内会出现微分负电导现象。