第四章半导体的导电性
- 格式:ppt
- 大小:7.25 MB
- 文档页数:128
第四章半导体的导电性本章重点1.迁移率2.载流子的散射3.电导率4.迁移率和电阻率与杂质浓度和温度的关系§ 4.1 载流子的漂移运动迁移率4.1.1 欧姆定律S E S E S l l E R V I σρρ====/为电导率,单位:西门子/米, 西门子/厘米ρσ1=mm c ⋅Ω⋅Ω,的单位电阻率ρ欧姆定律的微分形式EJ σ=4.1.2 漂移速度和迁移率载流子在电场力作用下作定向运动叫漂移运动,平均漂移速度。
dv −(2)d J nq v −=−E v d ×1sAO 电子浓度为n 的导体,电子漂移运动形成电流1d I nq v s−=−××−−==dv nq J E J 又增大电流密度随电场增加而,σ/(3)d d v Ev E μμ−−==Enq J μ=)4(μσnq =为电子迁移率,表示单位电场下电子的平均漂移速度。
描述载流子在电场中漂移运动的难易程度。
单位:(m 2/V.s 或cm 2/V.s )μ漂移电流示意图电场方向4.1.3 半导体的电导率和迁移率复杂性:电子和空穴两种载流子,且其浓度随温度、掺杂而变化。
空穴漂移方向电子电流空穴电流电子漂移方向电子& 空穴的电流方向均与电场方向相同半导体中电流EE pq nq J J J p n p n σμμ=+=+=)(半导体中电导率与载流子浓度和迁移率的关系:pn pq nq μμσ+=导带中电子自由运动形成电流,大。
n μ价带空穴导电,实际共价键上的电子在价键间运动形成电流,小。
p μn nq σμ=对N 型半导体n>>pppq σμ=对P 型半导体p>>n 对本征半导体p =n =n i()i n p n q σμμ=+电子迁移率大于空穴迁移率,高速开关器件主要依靠电子导电。
电导率主要取决于多子§ 4.2 载流子的散射J E σ=,电场一定,电流密度恒定应不断增加,,载流子受电场力加速J v nq J d −−=矛盾的两方面:原因所在:载流子与晶格原子或电离杂质等发生碰撞而交换能量,从而改变载流子速度的大小和方向4.2.1 载流子散射与漂移运动1、载流子的散射——改变速度的方向和大小处在外电场中的载流子运动:散射+漂移运动。
第四章 半导体的导电性1、300K 时,Ge 的本征电阻率为47cm Ω⋅,如电子和空穴迁移率分别为39002cm /(V s)⋅和19002cm /(V s)⋅,试求本征Ge 的载流子浓度。
解:首先,已知Ge 的本征电阻率i ρ=47cm Ω⋅,可得Ge 的本征电导率i σ=1i ρ=1/47S cm 又()i i n p n q σμμ=+本征Ge 的载流子浓度1331921 2.29010/()47/ 1.6010(39001900)/()ii n p n cm q S cm C cm V s σμμ-===⨯+⨯⨯⨯+⋅ 2、试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为14502cm /(V s)⋅和5002cm /(V s)⋅。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
比本征Si 的电导率增大了多少倍?解:(1)本征Si 的电导率()i i n p n q σμμ=+已知室温下22103,1450/(),500/(1.51)0n p i u cm V s u c cm m n V s - =⋅ =⨯⋅= ,代入上式得:64.6810/i S cm σ-=⨯(2) 已知Si 的原子密度为223510/cm ⨯,掺入百万分之一的As 后,在Si 中As 的浓度为:22316361510/510/10D N cm cm =⨯⨯=⨯ 因为杂质全电离,所以电离出的电子浓度1630510/D n N cm ==⨯当电离杂质浓度163510/i N cm =⨯时,可查图4-14得电子迁移率为:2850/()n cm V s μ=⋅由于1030(1.510/)i n n cm ⨯ ,又在室温下,则产生载流子以杂质电离为主,可忽略本征激发,即忽略少子空穴对导电的贡献,故此时电导率为: 163192510/ 1.6010850/() 6.8/n nqu cm C cm V s S cm σ-==⨯⨯⨯⨯⋅= 故:666.8// 1.45104.6810/i S cm S cmσσ==⨯⨯ 即电导率增大了145万倍。
第四章半导体的导电性本章主要内容载流子在外加电场作用下的漂移运动半导体的迁移率、电导率和电阻率随温度和杂质浓度的变化规律迁移率的本质-----散射4.1 载流子的漂移运动迁移率1、欧姆定律对于金属,电流I = V(电压)/R(电阻)V-I关系是直线对于半导体,流过不同截面的电流强度不一定相同,“即电流分布不均匀,而欧姆定律不能说明材料内部各处电流的分布情况。
电流密度:通过垂直于电流方向的单位面积的电流J = ∆I/∆S单位:A/cm2或A/m2欧姆定律微分形式:上式把通过导体中某一点的电流密度和该处的电导率及电场强度直接联系了起来。
S故: 半导体导电= 电子导电J = Jn + Jp = (nqu平均自由程:载流子在连续两次散射间自由运动的平均路程平均自由时间:载流子通过平均自由程所需的平均时间τ电场:载流子加速---定向运动;散射:载流子运动方向改变---杂乱无章,各个方向;半导体的主要散射机构:离化杂质散射晶格散射中性杂质散射位错散射(P为散射几率)起因:常温下,浅施主带正电• 双曲线,电离杂质处于一个焦点 • 速度小,作用时间长,偏离角θ大,τ小 • 弹性散射,不改变入射电子能量,只改变运动方向 τ ∝ T3/2/NI 杂质浓度(2)、晶格散射 晶格原子在其平衡位置附近不断进行热振动,且各个 原子的振动不是孤立的。
分析表明:晶格中原子的振动都 是由若干不同的基本波动按波的叠加原理组合而成,这些 基本波动称为格波。
q代表格波波矢, q 的方向即波的传播方向晶格散射:载流子在运动过程中遭受振动的晶格原子的散射, 失去在电场中获得的能量,失去动量。
在能带具有单一极值的半导体中 起主要散射作用的是长波。
即波 长比原子间距大很多倍的格波。
电子热运动速度~105m/s 电子波波长约10-8m 根据动量守恒要求,声子波长 范围应在同一量级,即10-8m,而 晶体中原子间距为10-10m,因而 起主要散射作用的是长波。