2013-4-7 灵敏度分析与参数规划 5-7
灵敏度分析的任务
线性规划的灵敏度分析要解决两个问题:
一个或几个系数或要素变化后,当前的
最优解或最优基是否有变。
这些系数在什么范围内变动时,当前的
最优解或最优基不变。 另外,一旦当前解受影响就要运用适当 方法对其进行调整,以便得到新的最优解。
2013-4-7 灵敏度分析与参数规划 5-8
分析结果的处理方法
针对上述五种不同的分析结果,可按下列相 应的调整方法进行处理。 分析结果 处理方法
最优解不变
最优基不变 变为可行解 变为正则解 变为普通解
2013-4-7 灵敏度分析与参数规划
计算 CN - CBB-1N
计算 XB(*) = B-1b 原始解法求最优解 对偶解法求最优解 混合解法求最优解
2013-4-7 灵敏度分析与参数规划 5-3
生产计划问题
cj CB XB
0 0 0 -1 0 0 3 -1 2 0 3 -1 2 0 3 -1
b
2 3 x1 x2
0 x3
0 x4
0 x5
0 0 1 0 -1/2 0 1/4 -3/4 -1/2 [2] 1/4 1/4 0 1 0 0
θ
x3 8 x4 16 x5 12 z 0 x3 2 x4 16 x2 3 z -9 x1 2 x4 8 x2 3 z -13 x1 4 x5 4 x2 2 z -14
5-14
2013-4-7
灵敏度分析与参数规划
2. 基变量系数 cr 的变化分析
当基变量 xr 的系数 cr (CB)变化 cr 时,就会引起 CB 的变化,从而影响到各非基变量 xj 对应的j 。 设 CB=( 0, …, cr , …,0 ),若要求原最优解不变,则 新的检验数必须满足 j' = cj - (CB +CB )B-1Pj = cj - CBB-1Pj - CB B-1Pj =j - [(0, …,cr , …,0)(b1j, …, brj, …, bmj)T] =j - cr brj ≤0 于是得到 cr ≤j/brj , brj < 0 j=1 , 2 , …, n cr ≥j/brj , brj > 0 cr的变化范围为是 max { j /brj | brj > 0 }≤ cr ≤ min { j /brj | brj < 0 }