运筹学灵敏度分析题
- 格式:doc
- 大小:264.00 KB
- 文档页数:5
运筹学灵敏度举例1.已知以下线性规划问题max z= 2x 1 +x 2-x 3 s.t. x 1 +2x 2 +x 3 ≤8 -x 1 +x 2 -2x 3≤4x 1,x 2,x 3≥0 的最优单纯形表如下:z x 1 x 5(1) 求使最优基保持不变的c 2=1的变化范围C 2 1+δ-1 0 0 0C B z 2 x 1 0x 53-δ≥0,δ≤3,即c 2≤4。
当c 2=5,即δ=4z x 1 8/2 x 512/3x2进基,x 1离基z x 2 x 5新的最优解为x 1=0,x 2=0,x 3=0,x 4=0,x 5=0,max z=20 (2) 对c 1=2进行灵敏度分析C 2+δ1 -1 0 0 0C B z 2+δ x 1 0x 53203020+≥+≥+≥⎧⎨⎪⎩⎪δδδ,δδδ≥-≥-≥-⎧⎨⎪⎩⎪3232/,当δ≥-3/2时,即c 1≥1/2时,最优基保持不变。
当c 1=4时,δ=4-2=2,最优基保持不变,最优解的目标函数制为z=16+8δ=32。
(3)增加一个新的变量x 6,c 6=4,a 612=⎡⎣⎢⎤⎦⎥。
[]z c c T666620124242-=-=⎡⎣⎢⎤⎦⎥-=-=-W aY B a 61610111213==⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥- 新的单纯形表为z x 1 x 5x 6进基,x 5离基z x 1 x 6新的最优解为x 1=4,x 2=0,x 3=0,x 4=0,x 5=0,x 6=4,max z=24。
(4)增加一个新的约束x 2+x 3≥2,求新的最优基和最优解。
z x 1 x 5 x 63/13/1用对偶单纯形法求解z xx x x x x RHSz x 1 x 5 x 2新的最优解为x 1=4,x 2=2,x 3=0,x 4=0,x 5=6,x 6=0,max z=10。
2.(1)利润最大化的线性规划模型为:max z= 25x1+12x2+14x3+15x4s.t. 3x1+2x2+x3+4x4≤24002x1+2x3+3x4≤3200x1+3x2+2x4≤1800x1, x2, x3, x4≥0单纯形表为:zx5x6x7x1进基,x5离基zx1x6x7x3进基,x6离基zx1x3x7x2进基,x1离基zx2x3x7最优解为:x1=0,x2=400,x3=1600,x4=0,x5=0,x6=0,x7=600,max z=27200即最优生产计划为:产品A不生产;产品B生产400万件;产品C生产1600万件;产品D不生产,最大利润:27200万元。
1、实验题目运筹学实验2-线性规划灵敏度分析某公司生产三种产品A1、A2、A3,它们在B1、B2两种设备上加工,并耗用C1、C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的最多可使用量如表 C -7所示。
表 C -7 生产三种产品的有关数据已知对产品A2的需求每天不低于70件,A3不超过240件。
经理会议讨论如何增加公司收入,提出了以下建议:(a )产品A3提价,使每件利润增至60元,但市场销量将下降为每天不超过210件; (b )原材料C2是限制产量增加的因素之一,如果通过别的供应商提供补充,每千克价格将比原供应商高20元;(c )设备B1和B2每天可各增加40 min 的使用时间,但相应需支付额外费用各350元; (d )产品A2的需求增加到每天100件;(e )产品A1在设备B2上的加工时间可缩短到每件2 min ,但每天需额外支出40元。
分别讨论上述各条建议的可行性,哪些可直接利用“敏感性报告”中的信息,哪些需要重新规划求解2、模型设1X 为A1的产量,2X 为A2的产量,3X 为A3的产量1)数学模型由题目可建立线性规划模型:321502030max x x x z ++=)3,2,1(0240703004204460234302323212131321=≥≤≥≤++≤+≤+≤++i x x x x x x x x x x x x x i2)用Excel 建模求解3、实验结果及敏感性分析1)实验结果以得出题得最优解 x1=0,x2=70,x3=230 时,最优值为 12900,即生产 A1,A2,A3 产品分别是 0 件, 70 件,230 件时,公司可获得最大利润 12900 元2)敏感性报告①A3 产品每件利润提到 60 元,这在灵敏度分析的最优基不变范围 A3[50-23.3333,5 0+∞]内,但市场销量下降为不超过 210 件,而从求解报告中中最优解 A3=230 时,有最大目标值,故此建议可行。
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案一、填空题1. 在线性规划问题中,若原问题存在最优解,则其对偶问题也一定存在最优解,这是线性规划的基本性质之一,称为______。
答案:对偶性2. 在线性规划问题中,若原问题与对偶问题均存在可行解,则它们均有______。
答案:最优解3. 对于线性规划问题,若原问题约束条件系数矩阵为A,目标函数系数向量为c,则其对偶问题的目标函数系数向量是______。
答案:c的转置(c^T)二、选择题1. 线性规划的原问题与对偶问题之间的关系是:A. 原问题的最优解和对偶问题的最优解相同B. 原问题的最优解是对偶问题的最优解的负数C. 原问题的最优解与对偶问题的最优解互为对偶D. 原问题的最优解和对偶问题的最优解没有关系答案:C2. 在线性规划中,若原问题不可行,则其对应的对偶问题:A. 可行B. 不可行C. 无界D. 无法确定答案:B三、判断题1. 线性规划的原问题和对偶问题具有相同的可行解。
()答案:错误2. 若线性规划的原问题存在唯一最优解,则其对偶问题也一定存在唯一最优解。
()答案:正确四、计算题1. 已知线性规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 42x1 + x2 ≤ 5x1, x2 ≥ 0求该问题的对偶问题,并求解原问题和对偶问题的最优解。
答案:对偶问题为:min w = 4y1 + 5y2s.t.y1 + 2y2 ≥ 32y1 + y2 ≥ 2y1, y2 ≥ 0原问题和对偶问题的最优解如下:原问题最优解:x1 = 2, x2 = 1,最大利润z = 8对偶问题最优解:y1 = 2, y2 = 1,最小成本w = 82. 某工厂生产甲、乙两种产品,生产一件甲产品需要2小时的机器时间和3小时的工人劳动时间,生产一件乙产品需要1小时的机器时间和1小时的工人劳动时间。
工厂每周最多能使用12小时的机器时间和9小时的工人劳动时间。
第三章线性规划对偶理论与灵敏度分析习题 一、思考题1.对偶问题和对偶变量的经济意义是什么?2.简述对偶单纯形法的计算步骤。
它与单纯形法的异同之处是什么?3.什么是资源的影子价格?它和相应的市场价格之间有什么区别?4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系?5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么?7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+kn σ(标准形为求最小值),其经济意义是什么?8.将i j ji bc a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确1.任何线性规划问题都存在且有唯一的对偶问题。
2.对偶问题的对偶问题一定是原问题。
3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。
4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。
5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。
6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。
7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。
8.对于i j ji bc a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。
9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。
10.应用对偶单纯形法计算时,若单纯形表中某一基变量0<i x ,且i x 所在行的 所有元素都大于或等于零,则其对偶问题具有无界解。
一、填空题1、对偶问题的对偶问题是()。
正确答案:原问题2、若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡()Y﹡b。
正确答案:=3、若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX()Yb。
正确答案:<=4、若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡()Y*b。
正确答案:=5、设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为()。
正确答案:min=Yb YA>=c Y>=06、影子价格实际上是与原问题各约束条件相联系的()的数量表现。
正确答案:对偶变量7、线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为()。
正确答案:AT8、在对偶单纯形法迭代中,若某bi<0,且所有的aij≥0(j=1,2,…n),则原问题()。
正确答案:无解二、选择题1、线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。
A. “≥”B. “≤”C. “>”D. “=”正确答案:A2、如果z*是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡满足()。
A.W﹡=Z﹡B.W﹡≠Z﹡C.W﹡≤Z﹡D.W﹡≥Z﹡正确答案:A3、如果某种资源的影子价格大于其市场价格,则说明()。
A.该资源过剩B.该资源稀缺C.企业应尽快处理该资源D.企业应充分利用该资源,开辟新的生产途径正确答案:B4、线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。
A.≥B.≤C. >D. =正确答案:A5、对偶单纯形法的迭代是从()开始的。
A.正则解B.最优解C.可行解D.可行解正确答案:A6、如果某种资源的影子价格大于其市场价格,则说明()。
A.该资源过剩B.该资源稀缺C.企业应尽快处理该资源D.企业应充分利用该资源,开辟新的生产途径正确答案:B7、线性规划灵敏度分析的主要功能是分析线性规划参数变化对()的影响。
运筹学灵敏度举例
1.已知以下线性规划问题
max z= 2x 1 +x 2
-x 3 s.t. x 1 +2x 2 +x 3 ≤8 -x 1 +x 2 -2x 3
≤4
x 1,
x 2,
x 3
≥0 的最优单纯形表如下:
z x 1 x 5
(1) 求使最优基保持不变的c 2=1的变化范围
C 2 1+δ
-1 0 0 0
C B z 2 x 1 0
x 5
3-δ≥0,δ≤3,即c 2≤4。
当c 2=5
,即δ=4
z x 1 8/2 x 5
12/3
x
2进基,x 1离基
z x 2 x 5
新的最优解为x 1=0,x 2=0,x 3=0,x 4=0,x 5=0,max z=20 (2) 对c 1=2进行灵敏度分析
C 2+δ
1 -1 0 0 0
C B z 2+δ x 1 0
x 5
3203020+≥+≥+≥⎧⎨⎪⎩⎪δδδ,δδδ≥-≥-≥-⎧⎨⎪
⎩
⎪3232/,当δ≥-3/2时,即c 1≥1/2时,最优基保持不变。
当c 1=4时,δ=4-2=2,最优基保持不变,最优解的目标函数制为z=16+8δ=32。
(3)增加一个新的变量x 6,c 6=4,a 612=⎡⎣⎢⎤⎦
⎥。
[]
z c c T
666620124242-=-=⎡⎣⎢⎤
⎦
⎥-=-=-W a
Y B a 61
610111213==⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥
=⎡⎣⎢⎤
⎦
⎥- 新的单纯形表为
z x 1 x 5
x 6进基,x 5离基
z x 1 x 6
新的最优解为x 1=4,x 2=0,x 3=0,x 4=0,x 5=0,x 6=4,max z=24。
(4)增加一个新的约束x 2+x 3≥2,求新的最优基和最优解。
z x 1 x 5 x 6
3/1
3/1
用对偶单纯形法求解
z x
x x x x x RHS
z x 1 x 5 x 2
新的最优解为x 1=4,x 2=2,x 3=0,x 4=0,x 5=6,x 6=0,max z=10。
2.
(1)利润最大化的线性规划模型为:
max z= 25x1+12x2+14x3+15x4
s.t. 3x1+2x2+x3+4x4≤2400
2x1+2x3+3x4≤3200
x1+3x2+2x4≤1800
x1, x2, x3, x4≥0
单纯形表为:
z
x5
x6
x7
x1进基,x5离基
z
x1
x6
x7
x3进基,x6离基
z
x1
x3
x7
x2进基,x1离基
z
x2
x3
x7
最优解为:x1=0,x2=400,x3=1600,x4=0,x5=0,x6=0,x7=600,max z=27200
即最优生产计划为:产品A不生产;产品B生产400万件;产品C生产1600万件;产品D不生产,最大利润:27200万元。
原料甲:耗用2400吨,没有剩余;原料乙:耗用3200吨,没有剩余;原料丙:耗用1200吨,剩余600吨。
(问三种原料的利用率?)
(2) 产品A 利润变化范围: -C -25+δ -12 -14 -15 0 0 0 0
-C B z -12 x 2 -14 x 3 0
x 7
-1-δ≤0,δ≥-1,-c 1’=-c 1+δ≥-25-1=-26,即c 1≤26(万元/万件)
产品B 利润变化范围: -C -25 -12+δ -14 -15 0 0 0 0
-C B
z
-12+δ x 2 -14 x 3 0
x 7
--≤-+≤-+≤--≤⎧⎨
⎪⎪⎩⎪⎪102154061204140δδδδ///,δδδδ≥-≤≤≥-⎧⎨⎪⎪
⎩⎪⎪18451216
/,-1≤δ≤12,-13≤-12+δ≤0,-13≤-c 2’≤
0, 即:0≤c 2’≤13。
产品C 利润的变化范围: -C -25 -12 -14+δ -15 0 0 0 0 -C B z -12
x 2
-14+δ x 3
0 x 7
--≤-+≤-+≤⎧⎨⎪⎩⎪10213204120δδδ//,δδδ≥-≤≤⎧⎨⎪⎩
⎪1148 -1≤δ≤8,-15≤-14+δ≤-6,-15≤-c 3’≤-6,6≤c 3’≤15
产品D 的变化范围 -C -25 -12 -14 -15+δ
0 0 0 0 z x
x x x x x x RHS -C B z -12 x 2 -14 x 3 0
x 7
-21-δ≤0,δ≥-21,-15+δ≥-36,-c 4’≥-36,c 4’≤36。
(3) 求三种原料的影子价格和四种产品的机会成本
由最优单纯形表可知,原料甲、乙、丙的影子价格分别为:
6万元/吨、4万元/吨、0万元/吨。
产品A 、B 、C 、D 的机会成本分别为(
∑=m
i ij
i a
q 1
):
26万元/万件、12万元/万件、14万元/万件、36万元/万件。
产品A 、D 在最优解中不安排生产的原因是机会成本大于利润。
(4) 在最优解中,原料甲的影子价格(6万元/吨)最大,因此这种原料最紧缺。
如果原料A 增加120吨,最优单纯形表的右边常数成为:
B b -'=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥+⎡⎣⎢⎢⎢⎤⎦
⎥
⎥⎥=
⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥+-⎡⎣⎢⎢⎢⎤
⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤
⎦
⎥⎥⎥≥11214001203234124001203200180040016006006000180100016004200///// 因此最优基保持不变,影子价格不变,原料的紧缺程度不变。