结构力学讲义(9月1日)
- 格式:ppt
- 大小:97.50 KB
- 文档页数:8
《结构⼒学》复习讲义第⼀讲平⾯体系的⼏何组成分析及静定结构受⼒分析【内容提要】平⾯体系的基本概念,⼏何不变体系的组成规律及其应⽤。
静定结构受⼒分析⽅法,反⼒、内⼒计算与内⼒图绘制,静定结构特性及其应⽤。
【重点、难点】静定结构受⼒分析⽅法,反⼒、内⼒计算与内⼒图绘制⼀、平⾯体系的⼏何组成分析(⼀)⼏何组成分析按机械运动和⼏何学的观点,对结构或体系的组成形式进⾏分析。
(⼆)刚⽚结构由杆(构)件组成,在⼏何分析时,不考虑杆件微⼩应变的影响,即每根杆件当做刚⽚。
(三)⼏何不变体系体系的形状(或构成结构各杆的相对位置)保持不变,称为⼏何不变体系,如图6-1-1 (四)⼏何可变体系体系的位置和形状可以改变的结构,如图6-1-2。
图6-1-1 图6-1-2(五)⾃由度确定体系位置所需的独⽴运动参数数⽬。
如⼀个刚⽚在平⾯内具有3个⾃由度。
(六)约束减少体系独⽴运动参数(⾃由度)的装置。
1.外部约束指体系与基础之间的约束,如链杆(或称活动铰),⽀座(固定铰、定向铰、固定⽀座)。
2.内部约束指体系内部各杆间的联系,如铰接点,刚接点,链杆。
规则⼀:⼀根链杆相当于⼀个约束。
规则⼆:⼀个单铰(只连接2个刚⽚)相当于两个约束。
推论:⼀个连接n 个刚⽚的铰(复铰)相当于(n- 1)个单铰。
规则三:⼀个单刚性结点相当于三个约束。
推论:⼀个连接个刚⽚的复刚性结点相当于( n- 1)个单刚性结点。
3.必要约束如果在体系中增加⼀个约束,体系减少⼀个⾃由度,则此约束为必要约束。
4.多余约束如果体系中增加⼀个约束,对体系的独⽴运动参数⽆影响,则此约束称为多余约束。
(七)等效作⽤1.虚铰两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作⽤与实铰相同。
平⾏链杆的交点在⽆限远处。
2.等效刚⽚⼀个内部⼏何不变的体系,可⽤⼀个刚⽚来代替。
3.等效链杆。
两端为铰的⾮直线形杆,可⽤⼀连接两铰的直线链杆代⼆、⼏何组成分析(⼀)⼏何不变体系组成的基本规则1.两刚⽚规则平⾯两刚⽚⽤不相交于⼀点的三根链杆连接成的体系,是内部⼏何不变且⽆多余约束的体系。
结构力学复习资料(整理)1. 引言本文整理了结构力学的重要概念和公式,以帮助读者复和掌握相关知识。
2. 静力学2.1 受力分析- 讲解了受力分析的基本原理和常用方法,如平衡方程和自由体图法。
- 提供了受力分析的步骤和实例,以加深理解。
2.2 结构的静力平衡- 介绍了结构的静力平衡条件,包括平衡方程和力矩平衡方程。
- 强调了结构的静力平衡在工程中的重要性。
2.3 支座反力计算- 讲解了支座反力计算的方法,包括自由体图法和平衡方程。
- 提供了支座反力计算的实例和注意事项。
3. 动力学3.1 动力学基本概念- 解释了动力学的基本概念,包括质点、力、加速度等。
- 提供了动力学相关公式和例题,以加强记忆。
3.2 牛顿第二定律- 介绍了牛顿第二定律的含义和应用,强调了力和加速度之间的关系。
- 提供了牛顿第二定律的公式和应用实例,帮助读者理解和运用该定律。
3.3 动量与冲量- 解释了动量与冲量的概念和计算方法。
- 强调了动量守恒定律和冲量定律的重要性。
- 提供了动量与冲量的公式和练题。
4. 应力与应变4.1 应力的概念- 介绍了应力的定义和常见类型,如拉应力、压应力和剪应力。
- 解释了应力的计算方法和单位,以及应力与受力的关系。
4.2 应变的概念- 讲解了应变的定义和类型,如线性应变和剪切应变。
- 强调了应变的计算方法和单位,以及应变与形变的关系。
4.3 应力-应变关系- 介绍了应力-应变关系的基本原理,包括胡克定律和弹性模量的概念。
- 提供了应力-应变关系的公式和实例,以帮助读者理解和运用该关系。
5. 结语本文整理了结构力学的复资料,包括静力学、动力学和应力与应变的重要概念和公式。
希望本文可以帮助读者复和巩固相关知识,提高结构力学的理解和应用能力。
以上为结构力学复习资料的简要整理,更详细的内容请参考相关教材和课堂讲义。
结构力学讲义第1章绪论§1-1 杆件结构力学的研究对象和任务结构的定义: 建筑物中支承荷载而起骨架作用的部分。
结构的几何分类:按结构的空间特征分类:空间结构和平面结构。
杆件结构力学的任务:(1)讨论结构组成规律与合理形式,以及结构计算简图的合理选择;(2)内力与变形的计算方法.进行结构的强度和刚度验算;(3)讨论结构稳定性及在动力荷载作用下的结构反应。
结构力学的内容(从解决工程实际问题的角度提出)(1) 将实际结构抽象为计算简图;(2) 各种计算简图的计算方法;(3) 将计算结果运用于设计和施工。
§1-2 杆件结构的计算简图1.结构体系的简化一般的构结都是空间结构。
但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算。
本课程主要讨论平面结构的计算。
当然,也有一些结构具有明显的空间特征而不宜简化成平面结构。
2.杆件的简化铰支座(2) 滚轴支座(3) 固定支座4.(4)定向支座M5.材料性质的简化将结构材料视为连续、均匀、各向同性、理想弹性或理想弹塑性。
6.荷载的简化集中荷载与分布荷载§1-3 杆件结构的类型§1-4 荷载的分类2.4.刚架5.组合结构6.A B荷载可分为恒载和活载。
一、按作用时间的久暂荷载可分为集中荷载和分布荷载 荷载可分为静力荷载和动力荷载 荷载可分为固定荷载和移动荷载。
二、按荷载的作用范围三、按荷载作用的性质四、按荷载位置的变化• §2-1 几何组成分析的目的和概念几何构造分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。
几何不变体系:不考虑材料应变条件下,体系的几何形状和位置保持不变的体系一、几何不变体系和几何可变体系几何可变体系:不考虑材料应变条件下,体系的几何形状和位置可以改变的体系。
二、自由度杆系结构是由结点和杆件构成的,我们可以抽象为点和线,分析一个体系的运动,必须先研究构成体系的点和线的运动。
第三节 静定结构位移计算一、广义力和广义位移以各种不同方式作用在结构上的力,如集中力、集中力偶、分布力、分布力偶等都称为广义力,它可以是外力,也可以是内力。
与广义力对应的位移称为广义位移。
或能唯一地决定结构几何位置改变的彼此独立的量称为广义位移,如线位移、角位移、相对线位移、相对角位移等。
本节主要介绍静定结构在广义力、温度变化、支座位移等因素作用下的广义位移计算。
二、变形体系的虚功原理变形体系的虚功原理可表述为:变形体系处于平衡的必要和充分条件是:在满足体系变形协调条件和位移边界条件的任意微小虚位移过程中,变形体系上所有外力所做虚功的总和(W 外),等于变形体系中各微段截面上的内力在其变形上所做虚功的总和(W 变),即W 外=W 变 (3—1)⎰⎰⎰∑+∑+∑=∑+∆∑ηθVd Md Nd RC P u (3—2)上式也称为变形体系的虚功方程。
式中P 为作虚功的广义力,Δ为与P 相应的广义 位移;C 是支座的线位移或角位移,R 是与C 相应的作虚功的支座反力或反力矩;M 、N 、V 分别表示作虚功的平衡力系中微段上的弯矩、轴向力、剪力;d θ、d u 、d η分别表示虚位移状态中同一微段的弯曲变形、轴向变形、平均剪切变形。
对变形体系虚功方程(3—2)应注意理解以下几点:(1)刚体系的虚功原理只是变形体系虚功原理的一种特殊情况,对刚体系来讲,W 变= 0,式(3—2)即成为刚体系虚功方程。
(2)式(3—2)是一个既可作为几何方程(变形协调方程),又可作为平衡方程的综合性方程。
例如当受力平衡状态为实际状态,位移状态为虚设状态时,变形体系的虚功原理就称为变形体系的虚位移原理,可利用它来求解受力平衡状态中的未知力,这时的虚功方程,实质上代表平衡方程;当位移状态为实际状态,受力平衡状态为虚设状态时,变形体系的虚功原理就称为变形体系的虚力原理,可利用它来求解位移状态中的未知位移,此时的虚功方程,实质上代表几何方程。
结构力学最全知识点梳理及学习方法
一、结构力学基础知识:
1、力的分类:根据受力作用的物体的性质,可将力分为外力(外力作用于结构物体的外部,如重力、气压力、拉力等)和内力(内力作用于结构物体的内部,如弯矩、剪力等);根据力的方向划分,可将它分为拉力、压力和旋转力;根据力的特性划分,可将它分为特殊力和普通力;根据力的大小和方向,可将它分为大力、小力、稳定力和不稳定力;根据受力物体的形状,可将它分为直线力、非直线力、旋转力和转动力等。
2、构件的类型:构件按照结构的组成形式,又分为横担、梁、柱、支撑、支座、腰椎和压杆等。
3、材料性质:构件的材料性质主要由弹性模量、屈服强度和杨氏模量等物理参数来表示。
4、结构形状:根据不同的表达方式,结构形状可分为直线式结构、曲线式结构、对称结构、反对称结构、非对称结构和无规则结构等。
5、运动学结构:可将力学结构分为机械运动结构和动力学结构,其中机械运动结构主要由动力系统、载荷系统和传动系统等部分组成;而动力学结构主要关注的是结构物体的动力运动情况,其中重点研究的是结构物体的运动特性,如动力传递、动力控制和动力分析等。
第一章绪论§1.1 结构和结构的分类一、结构(structure)由建筑材料筑成,能承受、传递荷载而起骨架作用的构筑物称为工程结构。
如:梁柱结构、桥梁、涵洞、水坝、挡土墙等等.二、结构的分类:按几何形状结构可分为:1、杆系结构(structure of bar system) :构件的横截面尺寸<<长度尺寸;2、板壳结构(plate and shell structure) :构件的厚度〈〈表面尺寸。
3、实体结构(massive structure):结构的长、宽、厚三个尺寸相仿。
三、杆系结构的分类:按连接方法,杆系结构可分为:§1.2 结构力学的研究对象、任务和方法一、各力学课程的比较:二、结构力学的任务:1、研究荷载等因素在结构中所产生的内力(强度计算);2、计算荷载等因素所产生的变形(刚度计算);3、分析结构的稳定性(稳定性计算);4、探讨结构的组成规律及合理形式。
进行强度、稳定性计算的目的,在于保证结构满足安全和经济的要求。
计算刚度的目的,在于保证结构不至于发生过大的变形,以至于影响正常使用。
研究组成规律目的,在于保证结构各部分,不至于发生相对的刚体运动,而能承受荷载维持平衡。
探讨结构合理的形式,是为了有效地利用材料,使其性能得到充分发挥。
三、研究方法:在小变形、材料满足虎克定律的假设下综合考虑:1、静力平衡;2、几何连续;3、物理关系三方面的条件,建立各种计算方法。
§1.3 结构的计算简图(computing model of structure )一、选取结构的计算简图必要性、重要性:将实际结构作适当地简化,忽略次要因素,显示其基本的特点。
这种代替实际结构的简化图形,称为结构的计算简图。
合理地选取结构的计算简图是结构计算中的一项极其重要而又必须首先解决的问题。
二、选取结构的计算简图的原则:1、能反映结构的实际受力特点,使计算结果接近实际情况.2、忽略次要因素,便于分析计算。
第⼆节静定结构受⼒分析和特性 ⼀、静定结构的定义 静定结构是没有多余约束的⼏何不变体系。
在任意荷载作⽤下,其全部⽀座反⼒和内⼒都可由静⼒平衡条件确定,即满⾜静⼒平衡条件的静定结构的反⼒和内⼒的解答是的。
但必须指出,静定结构任意截⾯上的应⼒和应变却不能仅由静⼒平衡条件确定,还需要附加其他条件和假设才能求解。
⼆、计算静定结构反⼒和内⼒的基本⽅法 在静定结构的受⼒分析中不涉及结构材料的性质,将整个结构或结构中的任⼀杆件都作为刚体看待。
静定结构受⼒分析的基本⽅法有以下三种。
(⼀)数解法 将受⼒结构的整体及结构中的某个或某些隔离体作为计算对象,根据静⼒平衡条件建⽴⼒系的平衡⽅程,再由平衡⽅程求解结构的⽀座反⼒和内⼒。
(⼆)图解法 静⼒平衡条件也可⽤⼒系图解法中的闭合⼒多边形和闭合索多边形来代替。
其中闭合⼒多边形相当于静⼒投影平衡⽅程,闭合索多边形相当于⼒矩平衡⽅程。
据此即可⽤图解法确定静定结构的⽀座反⼒和内⼒。
(三)基于刚体系虚位移原理的⽅法 受⼒处于平衡的刚体系,要求该⼒系在满⾜刚体系约束条件的微⼩的虚位移上所做的虚功总和等于零。
据此,如欲求静定结构上某约束⼒(反⼒或内⼒)时,可去除相应的约束,使所得的机构沿该约束⼒⽅向产⽣微⼩的虚位移,然后由虚位移原理即可求出该约束⼒。
三、直杆弯矩图的叠加法 绘制线弹性结构中直杆段的弯矩图,采⽤直杆弯矩图的叠加法。
直杆弯矩图的叠加法可叙述为:任⼀直杆,如果已知两端的弯矩,则杆件的弯矩图等于在两端弯矩坐标的连线上再叠加将该杆作为简⽀梁在荷载作⽤下的弯矩图,如图2-1所⽰。
作弯矩图时,弯矩值坐标绘在杆件受拉⼀边,弯矩图中不要标明正、负号。
(a) (b) 图2-1 四、直杆内⼒图的特征 在直杆中,根据荷载集度q,弯矩M、剪⼒V之间的微分关系dV/dx=q,dM/dx=V、d2M/dx2=q,可推出荷载与内⼒图的⼀些对应关系,这些对应关系构成了弯矩图与剪⼒图的形状特征(表2—1)。
《结构力学》复习讲义要点第一部分:力学基础1. 力学的基本概念:质点、力、力的性质、力的合成与分解、力的共线条件等。
2. 刚体力学:平动与转动、力矩、角动量、转动惯量、力矩的几何与代数相等条件等。
3. 静力学:平衡条件、力偶、杆条受力分析、平衡多边形等。
第二部分:截面力学1. 杆件截面特征:截面形状、截面形心、截面面积、截面宽度、截面模数等。
2. 拉压杆截面特征:杆轴力计算、细长杆的安全系数、压杆的稳定性、杆件受拉压状态分析等。
3. 扭转杆截面特征:杆件受扭力分析、圆形截面的极限扭矩、扭转角的计算等。
4. 弯曲杆截面特征:直线梁与弧形梁的受力分析、力的截面矩阵表示、梁截面的正向弯矩与反向弯矩、杨氏梁受力分析等。
第三部分:结构受力分析1. 杆系内力分析:截面法则、杆系的内力与外力关系、榀杆的变形与位移、杆系内力的计算等。
2. 杆系的受力分析:平衡条件的写法、平面结构与空间结构的受力分析、杆系的平面剪力图与弯矩图、受力分析的极端情况等。
3. 简支梁:梁的受力分析、悬臂梁的转角计算、剪力与弯矩图表、弹性线与弯矩-曲率关系等。
4. 悬链线与悬链线梁:悬链线形状方程、悬链线的性质与应用、悬链线梁的分析等。
第四部分:梁的变形1. 杆系的变形:位移分量的约束关系、虚功原理、单杆件的变形与位移、受约束的杆件变形计算等。
2. 弹性力学基本方程:胡克定律、弹性应变能、变形力、应变与变形的关系、应力分析与位移分析等。
3. 简支梁的本构关系:平衡微分方程、简支梁的自由振动、简支梁的拟静状态、简支梁的弹性力学与变形等。
第五部分:结构稳定性1. 稳定性基本概念:平衡与稳定的关系、平衡的稳定性判定、等效单轴刚度、曲线弯矩法等。
2. 简支梁的稳定性:轴力屈曲、弯曲屈曲与扭转屈曲、边界条件与截面要求等。
3. 大变形理论:弹性力学与大变形理论的区别、弹性线的切线方向、悬臂梁的大变形计算等。
总结:这份复习讲义总结了《结构力学》的核心要点,包含了力学基础、截面力学、结构受力分析、梁的变形和结构稳定性的内容。
第⼀节平⾯体系的⼏何组成分析 按照机械运动及⼏何学的观点,对平⾯结构或体系的组成情况进⾏分析,称为平⾯体系的⼏何组成分析。
⼀、名词定义 (⼀)刚⽚和刚⽚系 不会产⽣变形的刚性平⾯体称为刚⽚。
在体系的⼏何组成分析中,不考虑杆件微⼩的应变,这种不计应变的平⾯杆件就是刚⽚,由刚⽚组成的体系称为刚⽚系。
(⼆)⼏何可变体系和⼏何不变体系 当不考虑材料的应变时,体系中各杆的相对位置或体系的形状可以改变的体系称为⼏何可变体系。
否则,体系就称为⼏何不变体系。
⼀般的实际结构,都必须是⼏何不变体系。
(三)⾃由度、约束和对象 物体运动时的独⽴⼏何参数数⽬称为⾃由度。
例如⼀个点在平⾯内的⾃由度为2,⼀个刚⽚在平⾯内的⾃由度为3。
减少体系独⽴运动参数的装置称为约束,被约束的物体称为对象。
使体系减少⼀个独⽴运动参数的装置称为⼀个约束。
例如⼀根链杆相当于⼀个约束;⼀个连接两个刚⽚的单铰相当于⼆个约束;⼀个连接n个刚⽚的复铰相当于n—1个单铰;⼀个连接⼆个刚⽚的单刚性节点相当于三个约束;⼀个连接n个刚⽚的复刚性节点相当于n—1个单刚性节点。
⼀个平⾯体系的⾃由度w可按下式确定 W=3n—2H—R 其中n为体系中的刚⽚总数,H、R分别为体系中的单铰总数和⽀杆总数。
例如图1-1所⽰体系的⾃由度分别为1和0。
⾃由度⼤于零的体系⼀定是⼏何可变的。
⾃由度等于零及⼩于零的体系,可能是⼏何不变的也可能是⼏何可变的,要根据体系中的约束布置情况确定。
(a) (b) 图1-1 (四)必要约束和多余约束 如果在体系中增加⼀个约束,体系减少⼀个独⽴的运动参数,则此约束称为必要约束。
如果在体系中增加⼀个约束,体系的独⽴运动参数并不减少,则此约束称为多余约束。
平⾯内⼀个⽆铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。
(五)等效代替 1.等效刚⽚ ⼏何组成分析时,⼀个内部⼏何不变的平⾯体系,可⽤⼀个相应的刚⽚来代替,此刚⽚称为等效刚⽚。
2.等效链杆 ⼏何组成分析时,⼀根两端为铰的⾮直线形杆件,可⽤⼀根相应的两端为铰的直线形链杆来代替,此直线形链杆称为等效链杆。