02-误差及数据处理
- 格式:doc
- 大小:962.50 KB
- 文档页数:51
第二章 误差和分析数据处理(课后习题答案)1. 解:①砝码受腐蚀:系统误差(仪器误差);更换砝码。
②天平的两臂不等长:系统误差(仪器误差);校正仪器。
③容量瓶与移液管未经校准:系统误差(仪器误差);校正仪器。
④在重量分析中,试样的非被测组分被共沉淀:系统误差(方法误差);修正方法,严格沉淀条件。
⑤试剂含被测组分:系统误差(试剂误差);做空白实验。
⑥试样在称量过程中吸潮:系统误差;严格按操作规程操作;控制环境湿度。
⑦化学计量点不在指示剂的变色范围内:系统误差(方法误差);另选指示剂。
⑧读取滴定管读数时,最后一位数字估计不准:偶然误差;严格按操作规程操作,增加测定次数。
⑨在分光光度法测定中,波长指示器所示波长与实际波长不符:系统误差(仪器误差);校正仪器。
⑩在HPLC 测定中,待测组分峰与相邻杂质峰部分重叠:系统误差(方法误差);改进分析方法。
2. 答:表示样本精密度的统计量有:偏差、平均偏差、相对平均偏差、标准偏差、相对标准偏差。
因为标准偏差能突出较大偏差的影响,因此标准偏差能更好地表示一组数据的离散程度。
3. 答:定量分析结果是通过一系列测量取得数据,再按一定公式计算出来。
每一步测量步骤中所引入的误差都会或多或少地影响分析结果的准确度,即个别测量步骤中的误差将传递到最终结果中,这种每一步骤的测量误差对分析结果的影响,称为误差传递。
大误差的出现一般有两种情况:一种是由于系统误差引起的、另一种是偶然误差引起的。
对于系统误差我们应该通过适当的方法进行改正。
而偶然误差的分布符合统计学规律,即大误差出现的概率小、小误差出现的概率大;绝对值相等的正负误差出现的概率相同。
如果大误差出现的概率变大,那么这种大误差很难用统计学方法进行处理,在进行数据处理时,就会传递到结果中去,从而降低结果的准确性。
4. 答:实验数据是我们进行测定得到的第一手材料,它们能够反映我们进行测定的准确性,但是由于“过失”的存在,有些数据不能正确反映实验的准确性,并且在实验中一些大偶然误差得到的数据也会影响我们对数据的评价及对总体平均值估计,因此在进行数据统计处理之前先进行可疑数据的取舍,舍弃异常值,确保余下的数据来源于同一总体,在进行统计检验。
第二章实验数据误差分析和数据处理第一节实验数据的误差分析由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。
人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。
为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。
由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。
一、误差的基本概念测量是人类认识事物本质所不可缺少的手段。
通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。
科学上很多新的发现和突破都是以实验测量为基础的。
测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。
1.真值与平均值真值是待测物理量客观存在的确定值,也称理论值或定义值。
通常真值是无法测得的。
若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。
再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。
但是实际上实验测量的次数总是有限的。
用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:(1) 算术平均值 算术平均值是最常见的一种平均值。
设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为nx n x x x x ni in ∑==+⋅⋅⋅++=121(2-1)(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。
即n nx x x x ⋅⋅⋅⋅=21几(2-2)(3)均方根平均值 nxnxx x x ni in∑==+⋅⋅⋅++=1222221均(2-3)(4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。
设两个量1x 、2x ,其对数平均值21212121lnln ln x x x x x x x x x -=--=对(2-4)应指出,变量的对数平均值总小于算术平均值。
Analytical chemistryErrors and data treatment(2)二、有效数字及运算法则2非测量所得的自然数测量次数、样品份数 计算中的倍数反应中的化学计量关系 各类常数测量所得的数字测量值数据计算的结果3数字位数应与分析方法的准确度及仪器测量的精度相适应4有效数字: 分析工作中实际能测得的数字1. 有效数字(significant figure)☐在记录测量数据时,只保留一位可疑数(欠准数)☐只有数据的末尾数欠准,误差是末位数的±1个单位☐有效数字位数反映了测量和结果的准确程度,决不能随意增加或减少5m ◇分析天平(称至0.1mg):12.8228g (6),0.2348g (4) , 0.0600g (3)◇千分之一天平(称至0.001g): 0.235g (3)◇1%天平(称至0.01g): 4.03g (3), 0.23g (2)◇台秤(称至0.1g): 4.0g (2), 0.2g (1)V ☆滴定管(量至0.01mL):26.32mL (4), 3.97mL (3)☆容量瓶:100.0mL (4),250.0mL (4)☆移液管:25.00mL (4);☆量筒(量至1mL或0.1mL):25mL (2), 4.0mL (2)重量分析和滴定分析允许的误差一般在±0.2%之内,各测量数据应保留四位有效数字,注意计算结果的有效数字位数6☐数字1~9均为有效数字☐数字前0不是有效数字,其他数字之间的0计入有效数字: 0.0304(3)☐数字后的0,在小数中,计入有效数字位数:0.03400(4)☐数字后的0,在整数中,含义不清楚时, 最好用指数形式表示: 1000 (1.0×103, 1.00×103, 1.000 ×103)☐很小的数字,也可以用指数形式表示,但有效数字位数需保持不变:0.000018 → 1.8 ×10-5☐变换单位时,有效数字位数需保持不变:0.0038g→3.8mg ☐数据的第一位数≥8的,可多计一位有效数字,如9.35×104(4), 95.2%(4), 8.65(4)☐对数的有效数字位数按小数部分数字的位数计,其整数部分的数字只代表原值的幂次,如pH=10.28(2), 则[H +]=5.2×10-11有效数字位数72. 有效数字运算中的修约规则尾数≤4时舍; 尾数≥6时入尾数=5时, 若后面无数,或后面数为0, 舍5成双;若5后面还有不是0的任何数皆入四舍六入五成双例下列值修约为四位有效数字0.3247 40.3247 6 0.3247 50.3248 50.3248 500.3248 510.32470.32480.32480.32480.32480.32498禁止分次修约0.57490.570.5750.58×9运算时可多保留一位有效数字进行5.3527+2.3+0.054+3.355.35+2.3+0.05+3.35=11.0511.010标准限度值0.03%测定值0.033%修约标准偏差对标准偏差的修约,应使准确度降低统计检验时,标准偏差可多保留1-2位数参与运算表示标准偏差和RSD时,一般取两位有效数字与标准限度值比较时不修约×不合格0.03%0.2130.2211加减法:结果的绝对误差应不小于各项中绝对误差最大的数。
第2章误差和分析数据的处理思考题1.正确理解准确度和精密度,误差和偏差的概念。
答:准确度表示分析结果的测量值与真实值接近的程度。
准确度的高低,用误差来衡量,误差表示测定结果与真实值的差值。
精密度是表示几次平行测定结果相互接近的程度。
偏差是衡量测量结果精密度高低的尺度。
2.下列情况各引起什么误差,如果是系统误差,应如何消除?(1)砝码腐蚀——会引起仪器误差,是系统误差,应校正法码。
(2)称量时试样吸收了空气中的水分——会引起操作误差,应重新测定,注意防止试样吸湿。
(3)天平零点稍变动——可引起偶然误差,适当增加测定次数以减小误差。
(4)天平两臂不等长——会引起仪器误差,是系统误差,应校正天平。
(5)容量瓶和吸管不配套——会引起仪器误差,是系统误差,应校正容量瓶。
(6)天平称量时最后一位读数估计不准——可引起偶然误差,适当增加测定次数以减小误差。
(7)以含量为98%的金属锌作为基准物质标定EDTA的浓度——会引起试剂误差,是系统误差,应做对照实验。
(8)试剂中含有微量被测组分——会引起试剂误差,是系统误差,应做空白实验。
(9)重量法测定SiO2时,试液中硅酸沉淀不完全——会引起方法误差,是系统误差,用其它方法做对照实验。
3.什么叫准确度,什么叫精密度?两者有何关系?答:精密度是保证准确度的先决条件。
准确度高一定要求精密度好,但精密度好不一定准确度高。
系统误差是定量分析中误差的主要来源,它影响分析结果的准确度;偶然误差影响分析结果的精密度。
4.用标准偏差和算术平均偏差表示结果,哪一个更合理?答:标准偏差。
5.如何减少偶然误差?如何减少系统误差?答:通过对照实验、回收实验、空白试验、仪器校正和方法校正等手段减免或消除系统误差。
通过适当增加测定次数减小偶然误差。
6.某铁矿石中含铁39.16%,若甲分析结果为39.12%,39.15%,39.18%,乙分析得39.19%,39.24%,39.28%。
试比较甲、乙两人分析结果的准确度和精密度。
第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。
2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。
在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。
真实值是客观存在的,但在实际中却难以测得。
真值一般分为:<1>理论真值:三角形内角和等于1800。
<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。
1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。
思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。
在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。
因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。
实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。
例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。
另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。
<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。
如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。
<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。
第二章 误差和分析数据处理何测量都不可能绝对准确,在一定条件下,测量结果只能接近于真实值,而不能达到真实值个定量分析要经过许多步骤,并不只是一次简单的测量,每步测量的误差,都影响分析结果的性,因而定量分析结果的误差更加复杂行定量分析时,必须根据对分析结果准确度的要求,合理地安排实验,避免不必要的追求高准节 测量误差是衡量一个测量值的不准确性的尺度,反映测量准确性的高低差越小,测量的准确性越高1、 绝对误差和相对误差测量之中的误差,主要有两种表示方法:绝对误差与相对误差(一)绝对误差:测量值与真值(真实值)之差称为~绝对误差是以测量值的单位为单位,可以是正值,也可以是负值,及测量值可能大于或小于测量值越接近真值,绝对误差越小;反之,越大(二)相对误差:绝对误差与真值的比值称为~相对误差反映测量误差在测量结果中所占的比例,它没有单位通常相对误差以%,%0表示如果不知道真值,但知道测量的绝对误差,则相对误差也可以测量值x为基础表示在分析工作中,用相对误差衡量分析结果,比绝对误差更常用根据相对误差的大小,还能提供正确选择分析仪器的仪器对于高含量组分测定的相对误差应当要求严些(小些)对于低含量组分测定的相对误差可以允许大些在相对误差要求固定时,测定高含量组分可选用灵敏度较低的仪器,而对低含量组分灵敏度较高的仪器二、真值与标准参考物质可知的真值,有三类:理论真值、约定真值、相对真值:三角形内角和为180度:国际单位及我国的法定计量单位是约定真值各元素的原子量物质的理论含量:常用标准参考物质的证书上所给出的含量作为相对真值标准参考物质:1必须是经工人的权威机构鉴定,并给予证书的2必须具有很好的均匀性与稳定性3其含量测量的准确度至少要高于实际测量的3倍约定真值与相对真值是分析化学工作中最常用的真值除理论真值外,其它真值都是由实验测得,都带有一定的误差三、系统误差和偶然误差按误差的性质分:系统误差和偶然误差(一)系统误差:是由某种确定的原因引起的,一般它有固定的方向(正或负)和大小,重复测定时重复出现根据系统误差的来源分为:方法误差、仪器(或试剂)误差、操作误差方法误差:是由于不适当的试验设计或所选择的分析方法不恰当所引起的,通常方法误差影响的存在,使测定结果要么总是偏高;要么总是偏低,误差的方向固定仪器或试剂误差:是由仪器未经校准或试剂不合格所引起的:是由于分析工作者的操作不符合要求造成的在一个测定过程中这三种误差都可能存在:如果在多次测定中系统误差的绝对值保持不变,但相对值随被测组分含量的增大而:如果系统误差的绝对值随样品量的增大而成比例增大,相对值不变,则称为~也有时,系统误差的绝对值虽然随样品量的增大而增大,但不成比例系统误差是以固定的方向和大小出现,并具有重复性。
二、误差及数据处理(277题)一、选择题( 共120题)1. 2 分(0201)下列表述中,最能说明随机误差小的是-------------------------------------------------------( )(A) 高精密度(B) 与已知的质量分数的试样多次分析结果的平均值一致(C) 标准差大(D) 仔细校正所用砝码和容量仪器等2. 2 分(0202)以下情况产生的误差属于系统误差的是-----------------------------------------------------( )(A) 指示剂变色点与化学计量点不一致(B) 滴定管读数最后一位估测不准(C) 称样时砝码数值记错(D) 称量过程中天平零点稍有变动3. 2 分(0203)下列表述中,最能说明系统误差小的是-------------------------------------------------------( )(A) 高精密度(B) 与已知的质量分数的试样多次分析结果的平均值一致(C) 标准差大(D) 仔细校正所用砝码和容量仪器等4. 2 分(0204)下列各项定义中不正确的是--------------------------------------------------------------------( )(A) 绝对误差是测定值与真值之差(B) 相对误差是绝对误差在真值中所占的百分比(C) 偏差是指测定值与平均值之差(D) 总体平均值就是真值5. 1 分(0205)在定量分析中,精密度与准确度之间的关系是----------------------------------------------( )(A) 精密度高,准确度必然高(B) 准确度高,精密度也就高(C) 精密度是保证准确度的前提(D) 准确度是保证精密度的前提6. 2 分(0206)当对某一试样进行平行测定时,若分析结果的精密度很好,但准确度不好,可能的原因是----------------------------------------------------------------------------------------------------------( )(A) 操作过程中溶液严重溅失(B) 使用未校正过的容量仪器(C) 称样时某些记录有错误(D) 试样不均匀7. 2 分(0207)下列有关随机误差的论述中不正确的是----------------------------------------------------( )(A) 随机误差具有随机性(B) 随机误差具有单向性(C) 随机误差在分析中是无法避免的(D) 随机误差是由一些不确定的偶然因素造成的8. 2 分(0208)分析测定中随机误差的特点是----------------------------------------------------------------( )(A) 数值有一定范围(B) 数值无规律可循(C) 大小误差出现的概率相同 (D) 正负误差出现的概率相同9. 2 分 (0209)以下关于随机误差的叙述正确的是-----------------------------------------------------------( )(A) 大小误差出现的概率相等 (B) 正负误差出现的概率相等(C) 正误差出现的概率大于负误差 (D) 负误差出现的概率大于正误差10. 2 分 (0210)在量度样本平均值的离散程度时, 应采用的统计量是------------------------------------( )(A) 变异系数 CV (B) 标准差 s(C) 平均值的标准差 s x (D) 全距 R11. 2 分 (0211)对置信区间的正确理解是-----------------------------------------------------------------------( )(A) 一定置信度下以真值为中心包括测定平均值的区间(B) 一定置信度下以测定平均值为中心包括真值的范围(C) 真值落在某一可靠区间的概率(D) 一定置信度下以真值为中心的可靠范围12. 2 分 (0212)测定铁矿中 Fe 的质量分数, 求得置信度为 95%时平均值的置信区间为35.21%±0.10%。
对此区间的正确理解是--------------------------------------------------------------------( )(A) 在已测定的数据中有95%的数据在此区间内(B) 若再作测定, 有95%将落入此区间内(C) 总体平均值μ落入此区间的概率为95%(D) 在此区间内包括总体平均值μ的把握有95%13. 2 分 (0213)实验室中一般都是进行少数的平行测定,则其平均值的置信区间为------------------( )(A) μσ=±x u (B) μσ=±x u n(C) μα=±x t s f , (D) μα=±x t s n f ,14. 2 分 (0214)指出下列表述中错误的表述--------------------------------------------------------------------( )(A) 置信水平愈高,测定的可靠性愈高(B) 置信水平愈高,置信区间愈宽(C) 置信区间的大小与测定次数的平方根成反比(D) 置信区间的位置取决于测定的平均值15. 1 分 (0215)若已知一组测量数据的总体标准差σ,要检验该组数据是否符合正态分布,则应当用--------------------------------------------------------------------------------------------------( )(A) t 检验 (B) u 检验 (C) F 检验 (D) Q 检验16. 1 分 (0216)有两组分析数据,要比较它们的精密度有无显著性差异,则应当用---------------------( )(A) F 检验 (B) t 检验 (C) u 检验 (D) Q 检验17. 1 分 (0217)有一组平行测定所得的数据,要判断其中是否有可疑值,应采用------------------------( )(A) t 检验 (B) u 检验 (C) F 检验 (D) Q 检验18. 2 分 (0218)以下各项措施中,可以减小随机误差的是----------------------------------------------------( )(A) 进行仪器校正(B) 做对照试验(C) 增加平行测定次数(D) 做空白试验19. 2 分(0219)称取含氮试样0.2g,经消化转为NH4+后加碱蒸馏出NH3,用10 mL 0.05 mol/LHCl吸收,回滴时耗去0.05 mol/L NaOH 9.5 mL。
若想提高测定准确度, 可采取的有效方法是----( )(A) 增加HCl溶液体积 (B) 使用更稀的HCl溶液(C) 使用更稀的NaOH溶液 (D) 增加试样量20. 2 分(0220)可用下列何种方法减免分析测试中的系统误差--------------------------------------------( )(A) 进行仪器校正(B) 增加测定次数(C) 认真细心操作(D) 测定时保持环境的温度一致21. 2 分(0221)测定试样中CaO 的质量分数, 称取试样0.908 g,滴定耗去EDTA 标准溶液20.50 mL, 以下结果表示正确的是--------------------------------------------------------------------------------( )(A) 10%(B) 10.1%(C) 10.08%(D) 10.077%22. 2 分(0222)分析SiO2的质量分数得到两个数据:35.01%,35.42%, 按有效数字规则其平均值应表示为----------------------------------------------------------------------------------------------------------( )(A) 35.215%(B) 35.22%(C) 35.2%(D) 35%23. 2 分(0223)测定某有机物, 称取0.2000 g, 溶解后加入0.01000 mol/L I2标准溶液10.00 mL, 回滴I2时消耗0.01000 mol/L Na2S2O3 19.20 mL, 则此测定的相对误差约是---------------------( )(A) 千分之几(B) 百分之几(C) 百分之几十(D) 百分之百24. 2 分(0224)已知某溶液的pH值为11.90,其氢离子浓度的正确值为----------------------------------( )(A) 1×10-12 mol/L (B) 1.3×10-12 mol/L(C) 1.26×10-12 mol/L (D) 1.258×10-12 mol/L25. 2 分(0225)下列算式的结果应以几位有效数字报出-----------------------------------------------------( )0.1010(25.00-24.80)───────────1.0000(A) 五位(B) 四位(C) 三位(D) 二位26. 1 分(0226)下列各数中,有效数字位数为四位的是-------------------------------------------------------( ) 27. 1 分(0227)以下计算式答案x应为-------------------------------------------------------------------------( )11.05+1.3153+1.225+25.0678 = x(A) 38.6581 (B) 38.64 (C) 38.66 (D) 38.6728. 2 分(0228)c·V·M某组分的质量分数按下式计算而得: w(X) = ───────,m×10若c = (0.1020±0.0001)mol/L, V = (30.02±0.02)mL, M = (50.00±0.01)g/mol, m = (0.2020±0.0001)g ,则对w(X)的误差来说--------------------------------------------------( )(A) 由“V”项引入的最大(B) 由“c”项引入的最大(C) 由“M”项引入的最大(D) 由“m”项引入的最大29. 1 分(0281)为了消除0.001000 kg 中的非有效数字,应正确地表示为----------------------( )(A)1g (B)1.0g (C)1.00g (D)1.000g30. 1 分(0285)下列数据中有效数字不是四位的是--------------------------------------------------- ( )(A)0.2400 (B)0.0024 (C)2.004 (D)20.4031. 1 分(0286)下列数据中有效数字是四位的是----------------------------------------------------- ( )(A) 0.780 (B)0.078 (C)7.0080 (D)7.80032. 2 分(0290)四位学生用重量法同时对分析纯BaCl2⋅2H2O试剂中Ba的质量分数各测三次,所得结果及标准偏差如下[M r(BaCl2⋅2H2O)=244.3, A r(Ba)=137.3],其中结果最好的是---( )(A)x=55.42 s=1.5 (B)x=56.15 s=2.1(C)x=56.14 s=0.21 (D)x=55.10 s=0.2033. 2 分(0291)对阿波罗11号从月球上取回的土样中碳的质量分数w(C) 作了四次平行测定,得到的数据(%)为1.30×10-4,1.62×10-4,1.60×10-4和1.22×10-4。