空间角求法
- 格式:ppt
- 大小:878.50 KB
- 文档页数:27
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
学立体几何是中学数学的主要内容之一,而空间角的求解则是立体几何中对空间思维和运算能力要求较高的内容,也是每年高考的必考内容.立体几何中的空间角主要包括异面直线所成的角、直线与平面所成的角、二面角三大类.本文就这三类空间角的具体求法进行简单分析,供同学们复习时参考.一、异面直线所成的角的求法1.平移法例1如图1所示,ABC—A1B1C1是直三棱柱,∠BCA=π2,点D1,F1分别是A1B1和A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是(A)30"10(B)12(C)30"15(D)15"10解析:构建平行线将异面直线所成的角转化成平面角.∵D1,F1分别是A1B1和A1C1的中点,∴D1F1∥B1C1,D1F1=12B1C1.取BC的中点M,连接BD1,MF1.∵D1F1平行且等于12B1C1,BM平行且等于12B1C1,∴BM平行且等于D1F1,∴BMF1D1是平行四边形,MF1∥BD1.连接MA,显然∠MF1A是异面直线BD1和AF1所成的角.设BC=CA=CC1=1,则AM2=1+14=54,MF12=BD12=1+2%2&’2=32,AF12=1+14=54,∴cos∠MF1A=江山中学王陆军空间角的法求图1A1F1C1D1B1BAMC54+32-542×32!×54!=30!10.∴答案选A.2.补形法例2同例1.解析:如图2所示,将三棱柱ABC—A1B1C1补成四棱柱ABEC—A1B1E1C1.取B1E1的中点M,连接BM,D1M,D1B,显然MB∥AF1,∴∠MBD1是异面直线BD1和AF1所成的角.解△MBD1即可解决本题.3.向量法例3同例1.解析:同例1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,如图3所示.则点A(1,0,0),B(0,1,0),D112,12,%&1,F112,0,%&1,∴BD1=12,-12,%&1,AF1=-12,0,%&1,∴cos〈BD1,AF1〉=-14+0+15!2×6!2=30!10.4.三垂线定理法例4正三棱锥V—ABC中,D,E,F分别是VC,VA,AC的中点,P为VB上的一点,如图4所示,则直线DE与PF所成角的大小是(A)π6(B)π3(C)π2(D)π解析:当用平移法和补形法求解异面直线所成的角有困难时,可以考虑用三垂线定理法.如果一条异面直线在另一条异面直线所在平面的射影与该异面直线垂直,则问题就可迎刃而解.对于正三棱锥V—ABC,显然PF在底面的射影总在BF上,由于BF⊥AC,因此PF⊥AC.又∵DE∥AC,∴PF⊥DE.故答案选C.图2图4A1EMAF1D1E1BB1ACC1EBFDVPC学图3AF1C1B1D1A1CzxyB!’&#&"&&&!&#*()"二、直线与平面所成的角的求法1.定义法例5在正三棱柱ABC—A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AC1所成的角为α,则α等于(A)π3(B)π4(C)arcsin10!4(D)arcsin6!4解析:如图5所示,分别取AC,A1C1的中点N,M,连接MN,BN.在MN上取一点E,使NE=1.∵ABC—A1B1C1为正三棱柱,∴BN⊥平面AC1.连接AE,ED.∵ED∥BN,∴ED⊥平面AC1,∴EA为AD在平面AC1上的射影,∴∠DAE为DA与平面AC1所成的角,即为α.在Rt△ADE中,sinα=6!4,∴α=arcsin6!4,∴答案选D.2.特殊公式法例6正三棱锥P—ABC的棱长都相等,M是AB中点,如图6所示.则PA与CM所成的角是(A)arccos3!6(B)arccos3!4(C)arccos3!3(D)30°解析:设正三棱锥的棱长为a,过点A作AD∥CM,∴PA与CM所成的角即为PA与AD所成的角∠DAP,且有∠DAM=90°.再取BC中点E,连接AE,PE.显然∠PAE是AP与底面ABC所成的角.在△PAE中,cos∠PAE=AP2+AE2-PE22AP·AE=3!3,∠DAE=∠DAC+∠CAE=30°+30°=60°.由cos∠DAP=cos∠PAE·cos∠DAE,得cos∠DAP=3!3×cos60°=3!3×12=3!6,故∠DAP=arccos3!6.答案选A.3.向量法例7如图7所示,在棱长为1的图5图6AMDC1A1B1BMACDPEBCNE&#""!!$!!!!&#$(’"学#%’正方体ABCD—A1B1C1D1中,P是侧棱上的一点,CP=m.(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为32!;(2)在线段A1C1上是否存在一定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并加以证明.解析:(1)以D为原点,建立如图8所示的空间直角坐标系,连接D1P,D1A,AP,AC,DB.则点A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1).∴BD=(-1,-1,0),BB1=(0,0,1),AP=(-1,1,m),AC=(-1,1,0).又∵AC·BD=0,AC·BB1=0,∴AC为平面BDD1B1的一个法向量.再设AP与平面BDD1B1所成的角为θ,则sinθ=cosπ2-"θ由题意得22!·2+m2!=tanθ1+(tanθ)2!=32!1+(32!)2!,解得m=13.∴当m=13时,直线AP与平面BDD1B1所成的角的正切值为32!.(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,则Q(x,1-x,1),D1Q=(x,1-x,0).依题意,若对任意的m要使D1Q在平面APD1上的射影垂直于AP,则由三垂线定理可知其等价于D1Q⊥AP,∴AP·D1Q=0,∴-x+(1-x)=0,∴x=12,即存在定点Q,且当其为A1C1的中点时,满足题设要求.三、二面角的求法1.定义法例8如图9所示,正三棱柱ABC—A1B1C1的底面边长为3,侧棱AA1=33!2,D是CB延长线上的一点,且BD=BC,求二面角B1-AD-BA1BCPAC1D1B1DyA1BCDAC1D1B1学图7z图8!!"#$!#!$!"!!!"#%!#!$!"!$,*ZP的大小.解析:在棱AD上任取一点E,使得DE=1.作EF⊥AD,EH⊥AD,分别交DB1,DB于点F,H,则∠FEH为二面角B1-AD-B的平面角,连接FH.由题设条件可知∠ADB=30°,∠DAC=90°,∴EH=3#3.∵DB1=AB1=AB2+BB12#=37#2,AD=33#,∴EF=DE·tan∠ADB1=23#3,DH=EH2+ED2#=23#3,DF=DE2+EF2#=21#3,cos∠BDB1=BDB1D=27#7.∴HF=DH2+DF2-2DH·DF·cos∠BDB1#=1,cos∠HEF=EF2+EH2-HF22EF·EH=12.故二面角B1-AD-B的大小为60°.2.三垂线法例9三棱锥P—ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,如图10所示.(1)求证AB⊥BC;(2)如果AB=BC=23#,求侧面PBC与侧面PAC所成二面角的大小.解析:(1)取AC的中点D,连接PD,BD.∵PA=PC,∴PD⊥AC.又已知平面PAC⊥平面ABC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,故可得AC为△ABC外接圆的直径,∴AB⊥BC.(2)∵AB=BC=23#,D为AC中点,∴BD⊥AC.又∵平面PAC⊥平面ABC,∴BD⊥平面PAC,D为垂足.作BE⊥PC于E,连接DE.∵DE为BE在平面PAC内的射影,∴DE⊥PC,∴∠BED为所求二面角的平面角.在Rt△ABC中,AB=BC=23#,∴BD=6#.在Rt△PDC中,PC=3,DC=6#,PD=3#,∴DE=PD·DCPC=3#×6#3=2#.∴在Rt△BDE9A1BCFAC1B1HEPABCDE学图10图)!"&($!("&"%#D)!&("#中,tan∠BED=6"2"=3",∴∠BED=60°,即侧面PBC与侧面PAC所成的二面角为60°.3.垂面法在已知的二面角α-l-β中,作棱l的垂面γ,设γ∩α=OA,γ∩β=OB,则∠AOB为二面角α-l-β的平面角.例10如图11所示,已知四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF.(1)证明:MF是异面直线AB与PC的公垂线;(2)若PA=3AB,求二面角E-AB-D的平面角的正弦值.解析:(1)∵PA⊥平面ABCD,∴PA⊥AB.又∵AB⊥AD,∴AB⊥平面PAD,故可得AB⊥AE.∵AM∥CD∥EF,且AM=EF,AM⊥AE,∴四边形AEFM为矩形,∴AM⊥MF.又∵AE⊥EF,AE⊥PD,∴AE⊥平面PEF.而AE∥MF,∴MF⊥平面PEF,∴MF⊥PC,∴MF是AB与PC的公垂线.(2)由(1)可知平面PAD垂直于二面角E-AB-D的棱AB,且平面ME∩平面PAD=AE,平面AC∩平面PAD=AD,则∠EAD为二面角E-AB-D的平面角.设AB=a,则AP=3a.由Rt△AED∽Rt△PAD,可得∠EAD=∠APD.∴sin∠EAD=sin∠APD=ADPD=aa2+(3a)2"=10"10.4.公式法例11如图12所示,在正方体AC1中,E是BC中点,求二面角D1-B1E-C1的大小.解析:D1在平面B1ECC1的射影为C1,则△D1B1E在平面B1BCC1上的射影为△B1EC1.若设正方体棱长为2,则可得B1E=5",D1B1=22",D1E=3,S△BCE=2,S△DBE=3,∴cosθ=S△BCES△DBE=图12学BC11PEDAFM-’图))%"$(./-’$’)-)(()$)"图13C1CBFB1AA1D1EDyxz"23,∴θ=arccos23.5.向量法例12如图13所示,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E,F分别是线段AB,BC上的点,且EB=FB=1.求二面角C-DE-C1的正切值.解析:以A为原点,AB,AD和AA1分别为x轴,y轴和z轴的正方向建立空间直角坐标系,则有点D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).于是可得DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2).若设向量n=(x,y,z)与平面C1DE垂直,则可得:n⊥n⊥$%3x-3y=0x+3y+2z=$0%x=y=-12z.∴n=-z2,-z2,&’z=z2(-1,-1,2),其中z>0.若取n0=(-1,-1,2),则n0是与平面C1DE垂直的向量.∵向量AA1与平面CDE垂直,∴n0与AA1所成的角θ就是二面角C-DE-C1.∵cosθ=n0·|n|·||=-1×0-1×0+2×21+1+4(×0+0+4(=6(3,∴tanθ=2(2,∴二面角C-DE-C1的正切值为2(2.DEEC1AA1AA1!!!"#"!$$!%!&%学’()"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!"放下松一散步一位胖太太在街上散步,有个陌生的小男孩紧紧地跟着她。
空间角的求法一、异面直线所成角的求法平移法常见三种平移方式:直接平移;中位线平移(尤其是图中显现了中点):补形平移法。
“补形法”是立体几何中一种常见的方式,通过补形,可将问题转化为易于研究的几何体来处置,利用"补形法”找两异面直线所成的角也是经常使用的方式之一。
(1)直接平移法4、伍例1如图,PA丄矩形ABCD,已知PA=AB=8,BCJ0,求AD与PC所成角的正切值。
(尊)(2)中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面宜线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA=SB=SC,且Z ASB= Z BSC= Z CSA= y , M、N别离是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
(巧)(3)补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABCD -中,E是CC】的中点,求直线AC与EDi所成角的余弦值。
(竺)A ______ G ____二、线而角的兰种求法1 •直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
一般是解由斜线段,垂线段, 斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它能够起到联系各线段的作用。
例1四面体ABCS 中,SA, SB, SC 两两垂直,ZSBA=45°, ZSBC=60°, M 为AB 的中点,求:(1) BC 与 平面SAB 所成的角;(60。
) (2) SC 与平面ABC 所成的角。
(冷-)(“垂线”是相对的,SC 是面SAB 的垂线,又是面ABC 的斜线。
作面的垂线常依照面面垂直的性质定理,其 思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
)2•利用公式sinO = *:其中&是斜线与平面所成的角,力是垂线段的长,/是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
立体几何中空间角的求法立体几何是高中数学的核心内容之一,在高考中占有很大的比重。
考查的知识点、题型等相对稳定,但对学生的空间概念、逻辑思维能力、空间想象能力及运算能力要求较高,而且在2010年高考立体几何试题对转化与化归思想、数形结合思想、割补思想等数学思想的考查也体现的淋漓尽致,而高考对立体几何中空间角的考查一直是热点内容,更成为必考内容,空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的具体体现,故在历届高考试题中频繁出现,求解方法也多种多样,本文就是空间角常用的方法--传统法与空间向量法。
一、异面直线所成的角θ∈[ 0°,90°](1)传统方法:平移转化法或补形法,使之成为两相交直线所成的角,放入三角形中利用余弦定理计算,若求得的角为钝角,则这个角的补角才为所求。
(2)空间向量法:设异面直线ab与cd所成的角为θ,则cos θ = cos〈,〉参考例题:例1,如图在四棱锥o-abcd中,底面abcd是边长为1的菱形,∠abc= ,oa⊥面abcd,oa=2,m为oa的中点,则异面直线ab与md所成角的大小为()a. b. c. d. π解析:(法1)∵cd∥ab ∴∠mdc为异面直线ab与md所成的角(或其补角)在△abc中,ab=1,∠abc= ,bc=1 ,∴ac2=2-又oa⊥面abcd ∴rt△amc中,am2=1,∴mc2=3-又cd=1 md=∴在△mdc中,cos∠mdc= = ∴∠mdc=(法2)作ap⊥cd于p,分别以ab、ap、ao所在直线为x、y、z 轴建立空间直角坐标系。
则a(0,0,0), b(1,0,0), d(- ,,0),o(0,0,2), m(0,0,1)设ab与md所成的角为θ,又 =(1,0,0) =( - ,,-1)∴cosθ= = ∴θ=二、直线与平面所成的角θ∈[ 0°,90°](1)传统方法:先找到(或作出)过斜线上一点垂直于平面的直线,斜足与垂足的连线就是斜线在平面内的射影,该斜线与射影的夹角就是所求的角,然后放入直角三角形中求解。
空间角的几何求法一、 异面直线所成角(线线角) 范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 。
二、直线与平面所成角(线面角) 范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值. 【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠. (1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 三、平面与平面所成角(面面角) 范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。