数学人教版九年级上册用树状图法求概率学案
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
画树状图求概率-人教版九年级数学上册教案
一、教学内容
本节课主要内容为画树状图求概率。
二、教学目标
1.熟练掌握画树状图的方法;
2.能够运用树状图求解与概率有关的问题。
三、教学重难点
教学重点
1.熟练掌握画树状图的方法;
2.能够画出适当的树状图解决与概率有关的问题。
教学难点
1.能够理解并画出较为复杂的树状图;
2.熟练掌握在树状图中计算概率的方法。
四、教学方法
本节课采用讲授、演示和练习相结合的教学方法。
五、教学过程
1. 导入
在开始本节课时,先向学生介绍什么是树状图,并要求学生简单说明其作用和意义。
2. 讲授
1.介绍画树状图的方法:
–确定问题;
–找到可列举出所有情况的基本事件;
–画出树状图;
–计算每个事件的概率并求得所需概率;
2.通过例题演示画树状图的方法。
3. 练习
1.给出一些与概率有关的问题,要求学生在纸上先列举出所有可能的基本事件,然后画出树状图并计算每个事件的概率,并最终求得答案;
2.可以让学生自己创造一些与概率有关的问题,并画出树状图求解。
4. 总结
对本节课学习的内容进行总结,并梳理出难点和易错点,提醒学生在日后的学习中需注意。
六、教学反思
本节课通过讲授、演示和练习相结合的方式,使学生能够熟练掌握画树状图的方法,并且能够运用树状图求解与概率有关的问题。
教学中,由于有些同学对概率的基本概念不理解,导致他们对画树状图的方法难以理解,需要在以后的教学中加强对概率概念的讲解。
同时,在练习环节中,少部分同学在练习过程中存在着错误的计算方法,需要老师进行指导纠正。
第2课时用画树状图法求概率教案教学目标1.进一步理解有限等可能性事件概率的意义。
2.会用树状图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
3.进一步提高分类的数学思想方法,掌握有关数学技能(树状图)。
【教学重点】正确鉴别一次试验中是否涉及3个或更多个因素。
【教学难点】用树状图法求出所有可能的结果。
教学过程一、温故知新:回顾列表法解决实际问题,让学生用3分钟时间完成后展示,教师提问学生:把放回改为不放回结果是什么?【教学说明】温故知新,让学生体会放回与不放回实验的区别,为例一做铺垫。
二、新课引入:由三辆车通过十字路口这样的三步实验让学生体会列表法解决不了此题,元素多时,怎样才能解出所有结果的可能性?引出树状图,进而引出新课。
1.例1:用新的方法解决温故知新中不放回,两次取出标号之和是奇数的概率,通过教师的分析引导体会“树状图”解决问题的思路。
最后与列表法的结果比较两步法用列表法或树状图都可解决此类问题。
【教学说明】通过教师的引导,使学生体会树状图法解决问题的思路。
详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图与列表法的相同之处。
教师鼓励学生思考并大胆表示自己的想法。
2.例2:让学生由教师的引导,通过填空的方式,让学生体会三步实验用树状图求概率的方法。
分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,涉及到三步实验。
引导得出树状图的方法:第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.4分钟填空,2分钟看书上138页书写过程并总结。
九年级数学上册导学案(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23 .1 2 3 11 2 3 22 4 6 13×2=1×23 .∴这个游戏对双方公平. 6.彩票有100张,分别标有1,2,3,…100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?7.一张圆桌旁有4个座位,A 先坐在如图所示的位置上,B 、C 、D 随机地坐到其它三个座位上,求A 与B 不相邻而坐的概率。
A B C D2、现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A B C D3、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A B C D4、小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面--小明赢1分;抛出其他结果--小刚赢1分;谁先到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是()A.把“抛出两个正面”改为“抛出两个同面”B.把“抛出其他结果”改为“抛出两个反面”C.把“小明赢1分”改为“小明赢3分”D.把“小刚赢1分”改为“小刚赢3分”5、5月9日为中国旅游日,苏州推出“读万卷书,行万里路,游苏州景”为主题的系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三苏石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏按南宗家庙,下午选中江郎山着两个地点的概率是()A. B. C. D.6、定义一种“十位数上的数字比个位、百位上的数字都要小”的三位数字叫做“v数”如“947”就是一个“v数”。
人教版数学九年级上册《画树状图求概率》教案4一. 教材分析《画树状图求概率》是人教版数学九年级上册的一章内容,主要讲述了利用树状图来求解概率问题。
本节课通过树状图的方法,让学生更好地理解概率的计算,培养学生的逻辑思维能力和图形表达能力。
二. 学情分析九年级的学生已经掌握了概率的基本概念和计算方法,但对树状图的应用还不够熟练。
因此,在教学过程中,需要引导学生运用已学过的知识,将树状图与概率计算相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握树状图求概率的方法,能熟练运用树状图解决实际问题。
2.过程与方法:通过小组合作、讨论交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:树状图求概率的方法。
2.难点:如何将实际问题转化为树状图,并准确计算概率。
五. 教学方法1.情境教学法:通过生活实例,引发学生对概率问题的思考。
2.小组合作法:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
六. 教学准备1.准备相关的生活实例,用于导入新课。
2.准备树状图的模板,方便学生操作。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如抽奖活动,引导学生思考如何计算中奖的概率。
从而引出本节课的主题——利用树状图求概率。
2.呈现(10分钟)讲解树状图求概率的方法,引导学生通过树状图来解决问题。
以抽奖活动为例,展示如何将问题转化为树状图,并计算出中奖的概率。
3.操练(10分钟)学生分组讨论,尝试解决其他实际问题,如抛硬币、掷骰子等。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行点评,总结错误原因,巩固所学知识。
5.拓展(5分钟)引导学生思考:如何利用树状图解决更复杂的概率问题?引发学生对概率问题的深入思考。
第二十五章概率初步25.2 用列举法求概率第2课时画树状图法求概率学习目标:1.进一步理解等可能事件概率的意义.2.学习运用树形图计算事件的概率.3.会正确用画树状图法求出所有可能出现的结果,并计算事件的概率.重点:会运用树形图计算事件的概率.难点:会正确用画树状图法求出所有可能出现的结果,并计算事件的概率.一、知识链接1.什么是列举法?列举一次试验可能出现的所有结果时,学过哪些方法?2. 用列表法求概率(1)一口袋中装有3个完全相同的小球,它们分别标有1,2,3,随机地摸出一个小球,然后放回,再随机摸出一个小球,求出两次摸取的小球的标号之和是奇数的概率.(2)若上题中摸出一球后不放回,再随机摸出一球,标号之和是奇数的概率是多少?二、要点探究探究点1:利用画树状图法求概率问题1 抛掷一枚均匀的硬币,出现正面向上的概率是_______.问题 2 同时抛掷两枚均匀的硬币,出现正面向上的概率是_______;一枚硬币正面朝上,一枚硬币反面朝上的概率是.要点归纳:树状图的画法如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:树状图法:按事件发生的次序,列出事件可能出现的结果.合作探究活动:石头、剪刀、布同学们:你们玩过“石头、剪刀、布”的游戏吗,小明和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏中有概率的知识吗?问题:尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A,B,C 的概率.A:“小明胜” B:“小华胜” C:“平局”归纳总结:画树状图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;(4)用概率公式进行计算.例1 甲口袋中装有2个相同的,它们分别写有字母A和B,乙口袋中装3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的,它们分别写有字母H和I,从三个口袋中各随机取出1个小球.(1) 取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少?(2) 取出的3个小球上全部是辅音字母的概率是多少?例2 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.方法总结:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A 发生的结果总数m,“树状图”能帮助我们有序的思考,不重复,不遗漏地得出n和m.例3 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A:“传球三次后,球又回到甲的手中”,写出A发生的所有可能结果;(3)求P(A).思考你能够用列表法写出3次传球的所有可能结果吗?方法总结:当试验包含两步时,列表法比较方便;当然,此时也可以用树形图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.练一练1.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b).甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?2.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1) 三辆车全部继续直行;(2) 两车向右,一车向左;(3) 至少两车向左.三、课堂小结1.三女一男四人同行,从中任意选出两人,其性别不同的概率为()A.14B.13C.12D.342.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.3.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1) 两次取出的小球上的数字相同;(2) 两次取出的小球上的数字之和大于10.4.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包,如果老师从每个盘中各选一个包子(馒头除外),那请你帮老师算算选的包子全部是酸菜包的概率是多少?参考答案自主学习知识链接1.在一次试验中,如果出现的结果只有有限个,且各种结果出现的可能性大小相等,那我可以通过列举试验结果的方法,求出随机事件发生概率,这种方法,叫做列举法.学过的列举法有直接列举法和列表法.由表格可知,一共有9种等可能的结果,两次摸取的小球的标号之和是奇数的有概率是4种,则P(两次摸取的小球的标号之和是奇数)=4 9 .由表格可知,一共有6种等可能的结果,两次摸取的小球的标号之和是奇数的有概率是4种,则P(两次摸取的小球的标号之和是奇数)=42 = 63.课堂探究二、要点探究探究点1:利用画树状图法求概率问题1 12问题21412合作探究问题:一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头);因此P(A)=31 = 93.事件B发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布);因此P(B )=31 = 93.事件C发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布).因此P(C )=31 = 93.,画树状图如下:从树状图中可以看出,有12种等可能的结果.(1)取出的3个小球上恰好有1个元音字母的结果有5种,即ACH、ADH、BCI、BDI、BEH,所以P(1个元音)=5. 12有2个元音字母的结果有4种,即ACI、ADI、AEH、BEI,所以P(2个元音)=41=. 123部为元音字母的结果有1种,即AEI,所以P(3个元音)=1. 12(2)取出的3个小球上全部是元音字母的结果有2种,即BCH、BDH,所以P(3个辅音)= 21=.126例2 解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12中结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41=. 123例3 解:(1)画树状图如图所示:由树状图可知共有八种可能的结果,每种结果出现的可能性相同;(2) 传球三次后,球又回到甲手中,事件A发生有两种可能出现结果(乙,丙,甲)(丙,乙,甲)(3) P(A)=21=.84练一练 1.解:用“树状图”列出所有可能出现的结果:由树状图可知,一共有6种等可能的结果,“取出1件蓝色上衣和1条蓝色裤子”记为事件A,那么事件A发生的概率是1 . 62.解:用“树状图”列出所有可能出现的结果:由树状图可知,共有27种等可能的结果.(1)全部直行的结果只有1种,则P(全部继续直行)= 1. 27(2)两车向右,一车向左的结果有3种,则P(两车向右,一车向左)=31=. 279(3)至少两车向左的结果有5种,则P(至少两车向左)=7. 27当堂检测1. C2.103.解:根据题意,画出树状图如下由树状图可知,一共有9种等可能的结果.(1) 两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)=31 = 93.(2) 两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和大于10)=4 . 94.解:根据题意,画出树状图如下由树状图得,所有可能出现的结果有18个,它们出现的可能性相等.选的包子全部是酸菜包有2个,所以选的包子全部是酸菜包的概率是:P(全是酸菜包)=21= 189.。
第2课时用树状图法求概率教学目标理解并掌握树形图法求概率的方法.教学重点理解树形图的应用方法及条件,用画树形图的方法求概率.教学难点用树形图列举出各种可能,求实际问题中的概率.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标国庆长假期间,小军跟爸爸开车到A地游玩,途中要经过两个十字路口(每个路口都有红、绿、黄三种灯各种灯亮的时间一样).(1)请列举出小军和爸爸经过两个路口时的红绿灯的所有情况;(2)他们的车一路绿灯的概率是多少?【思考】1.用列表法能解决吗?为什么?二、自主学习指向目标1.自读教材第138至139页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点用树状图法求简单事件的概率出示教材第138页例3,思考下列问题:(1)取出3个小球,可以看作需要几步来完成?每一步里有哪几种结果?(2)怎样引导学生画出树状图表示所有等可能出现的结果?(3)你知道元音字母有哪些?本题中涉及的元音字母是________;辅音字母有哪些?本题中涉及的辅音字母是________.【展示点评】画树形图要分清一次试验的几个因素.本题中第一个因素是:从甲口袋中抽取一个小球上面写的字母;第二个因素是从乙口袋中抽取一个小球上面写的字母;第三个因素是从丙口袋中抽取一个小球上面写的字母.树形图可以从上面向下倒着画,也可以从左边向右方画.【小组讨论】如何根据题目的特点,选择合适的列举法?【反思小结】当一次试验涉及两因素或包含两步时,列表法比较方便,当然也可以用画树形图法;当试验存在三步或三步以上时,只能用画树形图法解决概率问题.【针对训练】见学生用书“当堂练习”.四、总结梳理内化目标1.本节课学习后我们共学会了三种列举方法求概率:一是直接列举法;二是表格列举法;三是画树形图法.2.用列表法和树状图法求随机事件的概率各有什么特点?五、达标检测反思目标1.连续抛掷一枚均匀的硬币三次,每次都正面向上的概率是__1,8__.2.甲、乙、丙三人坐在一排照相留念,则甲、乙两人坐在相邻的位置上的概率是__2,3__.3.(2015·兰州)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传三次.则三次传球后,球回到甲脚下的概率是( C )A.1,2B.1,3C.1,4D.3,8六、布置作业巩固目标1.上交作业:教材第140,第4,6,8题;2.课后作业:见学生用书的“课后作业”部分.教学反思。
画树状图求概率-人教版九年级数学上册教案教学目标1.了解树状图的概念和应用;2.能够用树状图求解含有多个事件的复合事件的概率;3.在实际问题中应用树状图解决相关问题。
教学重难点1.树状图的画法;2.如何将多个事件合并成复合事件,并求解其概率。
教学准备1.印有九年级数学上册树状图知识点讲解的PPT;2.九年级数学上册第五章第一节“概率”的教材;3.十几个同学的自我介绍,包括年龄、爱好、性别、爱吃的食物等信息。
教学过程第一步:导入1.让同学们分组,每个小组从自我介绍中挑选出一个人作为样本,让这个人抽一张有人像和姓名的卡片,并求出这个人是男生、女生或名字中带有“英”字母的概率。
2.让同学们将自己的解题过程分享给全班,引出本节课的主题:如何用树状图来求解概率问题。
第二步:讲解1.讲解树状图的概念和画法,并通过几个简单的例题展示树状图的应用。
2.讲解如何将多个事件合并成复合事件,并用树状图求解复合事件的概率。
第三步:练习1.让同学们结合教材中的例题和习题,分组完成课本P76-P77上的练习。
2.让每个小组派出一名同学发言,展示自己的解题过程和答案,其他小组互相评价。
第四步:拓展1.以常见的生日问题为例,展示如何用树状图求解复杂的概率问题。
2.让同学们结合现实生活中的问题,思考如何用树状图求解相关概率问题,并分享自己的思考和解决方案。
教学反思本节课的教学目标是让同学们了解树状图的概念和应用,能够用树状图求解含有多个事件的复合事件的概率,并在实际问题中应用树状图解决相关问题。
通过引入课前例题和生活应用,提高了同学们的学习积极性,增强了他们的应用意识,使得他们能够将所学的知识与实际问题相结合。
此外,在小组讨论和展示中,同学们除了加深了对树状图与概率的理解,还培养了他们的团队合作能力。
在今后的教学中,我还应该更加注重引导同学们思考问题的方法和思路,加强实践应用能力的培养。
第2课时 用树状图法求概率●情景导入 同学们,你们玩过“手心、手背”游戏吗?现有甲、乙、丙三名同学打乒乓球,想通过“手心、手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么,你知道通过一次“手心、手背”游戏能决定甲先打乒乓球的概率是多少吗?能用列表法求解吗?【教学与建议】教学:利用生活中常见的“手心、手背”游戏,发现列表法难以解决,导入用画树状图的方法分析求解.建议:教师一定要让学生明白列表法只适用于试验结果不很多的情形,而涉及多个因素时,用画树状图法解决.●复习导入 有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平. 实际上,可以将这个游戏分两步进行,可以用列表法求概率.幸运数积 吉祥数1 2 3 40 0 0 0 01 123 43 3 6 9 12积为奇数的概率P 1=412 =13 ,积为偶数的概率P 2=812 =23,除了列表法,我们还可以画树状图分析此游戏的公平性.【教学与建议】教学:复习列表法,导入画树状图法求概率,让学生理解解决问题的方法的多样性.建议:让学生单独完成后再小组讨论.命题角度 用画树状图法求概率树状图用于分析涉及两个或两个以上因素的试验.【例】(1)从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为__23__. (2)车辆经过某收费站时,有A ,B ,C ,D 四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.①一辆车经过此收费站时,选择A 通道通过的概率为__14__; ②两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.解:设两辆车为甲、乙,画树状图如图: 由树状图可知,两辆车经过此收费站时,会有16种等可能的结果,其中选择不同通道通过的有12种结果,∴P (选择不同通道通过)=1216 =34. 高效课堂 教学设计1.掌握用“树状图”求概率的方法.2.会画“树状图”并利用其分析和解决有关三步求概率的实际问题.▲重点用“树状图”求概率的方法.▲难点画“树状图”分析和解决有关三步求概率的实际问题.◆活动1 新课导入 1.小颖将一枚质地均匀的硬币掷一次,正面朝上的概率是__12 __;小颖将一枚质地均匀的硬币连续掷了两次,你认为两次都是正面朝上的概率是__14 __;连续掷三次正面朝上的概率是多少呢? 2.掷一枚硬币一次,这是一步试验,可用直接计算法求概率;掷两枚硬币(或一枚硬币掷两次),这是两步试验,可用__列表法__求概率;掷三枚硬币(或一枚硬币掷三次),这是三步试验.那么如何求三步试验的概率呢?带着这个问题进入今天的学习吧!◆活动2 探究新知1.教材P 138 例3.提出问题:本次试验涉及到几个因素?用列表法能不能列举出所有可能出现的结果?学生完成并交流展示.提出问题:什么时候用“列表法”方便?什么时候用“画树状图法”方便?学生完成并交流展示.◆活动3 知识归纳1.用树状图列举的结果看起来一目了然,当事件要经过多个步骤(三步或三步以上)完成时,用画树状图法求事件的概率. 2.画树状图求概率的基本步骤:(1)明确试验的几个步骤及顺序;(2)画树状图列举试验的所有等可能的结果;(3)计数得出m ,n 的值;(4)计算随机事件的概率.◆活动4 例题与练习例 “红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,回答以下问题:解:(1)补全下列“树状图”:(2)他遇到三次红灯的概率是多大?__P (三次红灯)=18__. 练习1.教材P 139 练习.2.某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( D )A .12B .13C .14D .163.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为__415__. ◆活动5 课堂小结1.当一次试验涉及两个因素,且可能出现的结果较多时,为不重不漏地列出所有可能的结果,通常用列表法,也可以用画树状图法.2.当一次试验涉及三个因素或三个以上的因素时,列表法就不方便了,为不重不漏地列出所有可能的结果,通常用画树状图法.1.作业布置(1)教材P140习题25.2第5,6,7,8题;(2)对应课时练习.2.教学反思。
第2课时用树状图求概率教学目标1.让学生在具体情境中了解概率的意义,运用画树状图来计算简单事件发生的概率。
2.通过实验获得事件发生的频率,知道大量重复实验时频率可作为事件发生概率的估计值。
3.通过实例进一步丰富对概率的认识,并能解决一些实际问题。
教学重点让学生在具体情境中了解概率的意义,并运用画树状图来计算简单事件发生的概率。
教学难点让学生通过实验丰富对概率的认识,并能解决一些实际问题。
教学流程一、创设情境,让学生在具体情境中体会概率的意义。
请班上王华同学与蒋波同学做掷硬币的游戏。
(游戏规则)任意掷一枚均匀的硬币两次,如果两次朝上的面相同,那么蒋波获胜;如果两次朝上的面不同,那么王华获胜。
先让同学猜一猜,这游戏公平吗?二、合作交流,作出合理判断。
活动一:掷硬币游戏。
1.与同桌做20次上面的掷硬币游戏,记录每次出现的情况。
2.汇总全班同学的记录,完成下表。
可能出现的情况……合计出现的次数占总次数的百分比3.根据上面的数据,你认为这个游戏公平吗?随意掷出一枚均匀的硬币两次,硬币落地后会出现4种结果:(1)两次都为正面朝上,记作(正,正)。
(2)第一次为正面朝上,第二次为反面朝上,记作(正,反)。
(3)第一次为反面朝上,第二次为正面朝上,记作(反,正)。
(4)两次都为反面朝上,记作(反,反)。
每种结果出现的概率相等,都是14。
即:P(正,正)=P(正,反)=P(反,正)=P(反,反)=1 4在上面的游戏中,还有其他的方法帮助我们列出所有可能出现的结果吗?教师引导学生得出“树状图”表示所有可能出现的结果。
每种结果的概率都是14。
活动二:穿衣游戏。
(一名同学实验,其余同学小组讨论,得出答案。
)陶志明同学春节外出旅游时带了3件上衣(棕色、蓝色、淡黄色各一件)和2条长裤(白色、蓝色各一条)。
问题:他任意拿出1件上衣和1条长裤穿上,正好是棕色上衣和蓝色长裤的概率是多少? 学生充分讨论,并出示参考解法。
解:用A 、B 、C 分别代表棕色、蓝色、淡黄色上衣;用D 、E 分别代表白色、蓝色长裤。
25.2 用列举法求概率(第二课时)
教学目标:
1.进一步理解有限等可能性事件概率的意义。
2.会用树状图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
3.进一步提高分类的数学思想方法,掌握有关数学技能(树状图)。
教学重点:用树状图法求出所有可能的结果。
教学难点;用树状图法求出所有可能的结果。
一、复习旧知
1、在一个不透明的袋子里装有完全相同的3个小球,3个小球分别标有数字1、
2、3,随机摸出一个小球记下小球上的数字后放回去搅匀,再随机摸出一个小球记下小球上的数字,求下列事件的概率:
(1)两次摸出的小球上的数字都是偶数;
(2)两次摸出的小球上的数字和为奇数。
2、掷两枚硬币,规定落地后,国徽朝上为“正”,国徽朝下为“反”,用列表法列举出所有的可能结果。
二、探究、引出树状图法
1、把练习题2中的“掷两枚硬币”更改为“掷三枚硬币”,还可以用列表法吗?还有其他的方法吗?
2、树状图
第1枚:正反
第2枚正反正反
第3枚正反正反正反正反
3、归纳:课本139页
三、例题精讲
例题甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3.4和5;丙口袋中装有2个相同的小球,它们分别写有数字6和7,从3个口袋中各随机地取出1个小球.
(1)用树状图法列举出所有的结果。
(2)取出的3个小球上数字都是奇数的概率是多少?
解:根据题意,可以画出如下的树状图“
四、练习,巩固技能
1、在一个不透明的袋子里装有完全相同的两个小球,两个小球分别标有数字1、2,连续三次随机摸出一个小球记下小球上的数字后放回去搅匀,求下列事件的概率:
(1)三次摸出的小球上的数字都是奇数;
(2)三次摸出的小球上的数字和为偶数。
五、多方尝试,(用树状图法完成以下题目)
1、在一个不透明的袋子里装有完全相同的3个小球,3个小球分别标有数字1、
2、3,随机摸出一个小球记下小球上的数字后放回去搅匀,再随机摸出一个小球记下小球上的数字,求下列事件的概率:
(1)两次摸出的小球上的数字都是偶数;
(2)两次摸出的小球上的数字和为奇数。
比较列表法和树状图法可得:
当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.
当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图.
六、单元小结
问题:
用列举法求概率有哪些方法?它们有什么异同?
七、课后作业
1.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)
2.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.
(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);
(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?。