自由度系统的振动
- 格式:ppt
- 大小:3.84 MB
- 文档页数:78
第四章两自由度系统的振动介绍第四章是关于两自由度系统的振动的介绍。
在这一章中,我们将探讨两自由度系统的振动模型、动力学方程,并讨论其解析解和数值解。
此外,我们还将介绍两自由度系统的模态分析、共振现象以及一些相关的应用。
两自由度系统是一种具有两个自由度的振动系统,它由两个具有质量和弹性的物体通过柔性连接件或刚性连接件相互连接而成。
这些物体可以是质点、弹性体或刚体等,而连接件可以是弹性杆、弹簧、细梁等。
在两自由度系统中,每个物体都可以做平动或转动运动,因此系统具有两个自由度。
例如,双摆锤、双弹簧振子等都属于两自由度系统。
两自由度系统的动力学方程可以由拉格朗日方程或牛顿第二定律得到。
得到动力学方程后,我们可以通过解方程得到系统的解析解,以获得系统的振动特性。
在分析解时,通常要求系统的运动是简谐振动或近似简谐振动。
另一种求解两自由度系统的方法是数值解法。
数值解法可以通过数值积分来近似求解动力学方程,这种方法常用于求解复杂的系统,或者对系统参数进行优化等情况。
分析解和数值解法可以用来研究两自由度系统的固有振动频率、振型和动态响应等。
通过模态分析,我们可以得到系统的固有频率,并确定每个模态的振型。
对于实际工程问题,模态分析可以帮助我们了解系统的共振情况,并设计出合适的控制策略,以求减小共振现象的发生。
共振是两自由度系统中一个重要而常见的振动现象。
当外力的频率与系统的固有频率接近时,系统会发生共振现象。
共振的发生会导致系统振幅的急剧增加,并且可能对系统的稳定性产生不利影响。
因此,在设计过程中,需要避免共振现象的发生,并采取合适的措施来控制共振。
此外,两自由度系统的振动也有许多实际应用。
例如,双摆锤可以用来研究天体运动和天文学现象;双弹簧振子可以用来研究建筑物或桥梁的振动特性;双振子可以用来研究分子振动和分子动力学等。
总而言之,两自由度系统的振动是一种普遍且重要的物理现象。
通过对两自由度系统进行建模和分析,我们可以深入了解系统的振动特性,并在实际应用中进行优化和改进。
多自由度系统的振动模态分析振动是物体在受到外界作用力或受到初始扰动后产生的周期性运动。
在工程领域中,多自由度系统的振动模态分析是一项重要的研究内容。
本文将介绍多自由度系统的振动模态分析的基本原理和方法。
一、多自由度系统的定义多自由度系统是指由多个相互连接的质点组成的系统。
每个质点都可以在三个坐标方向上自由运动,因此系统的自由度就是质点的个数乘以每个质点的自由度。
多自由度系统的振动模态分析可以帮助我们了解系统的固有振动特性,为工程设计和结构优化提供依据。
二、振动模态的概念振动模态是指多自由度系统在固有频率下的振动形态。
每个固有频率对应一个振动模态,振动模态的数量等于系统的自由度。
振动模态分析可以帮助我们确定系统在不同频率下的振动特性,从而预测系统的响应和寻找可能的共振点。
三、振动模态分析的方法1. 模态分析方法模态分析是一种通过数学方法求解系统的固有频率和振动模态的方法。
常用的模态分析方法包括有限元法、模态超级位置法等。
有限元法是一种基于离散化的方法,将系统分割成有限个小单元,通过求解每个单元的振动特性,最终得到整个系统的振动模态。
模态超级位置法是一种基于物理原理的方法,通过测量系统在不同频率下的振动响应,推导出系统的振动模态。
2. 模态参数的计算模态参数是指描述振动模态特性的参数,包括固有频率、振型、振幅等。
模态参数的计算可以通过实验测量和数值模拟两种方法。
实验测量是通过激励系统,测量系统在不同频率下的振动响应,并通过信号处理和频谱分析等方法计算出模态参数。
数值模拟是通过建立系统的数学模型,利用计算机仿真软件求解系统的振动模态。
四、振动模态分析的应用振动模态分析在工程领域有广泛的应用。
首先,振动模态分析可以帮助工程师了解系统的固有振动特性,从而优化设计和改善结构。
其次,振动模态分析可以用于故障诊断和预测,通过对系统的振动模态进行监测和分析,可以判断系统是否存在异常或潜在故障。
此外,振动模态分析还可以应用于声学工程、航天工程、汽车工程等领域。
2、两个自由度系统的受迫振动将特解代入简化后的微分方程组,得到关于振幅的方程组:)()(22=-+-=--B d dA h cB A b w w ,解上述代数方程组得到两个振幅为:cd d b d h A ----=))(()(222w w w cdd b hdB ---=))((22w w (1)当激振频率ωà0此时激振周期T à∞,表示激振力变化极其缓慢,实际上相当于静力作用。
01b k H c b h B A ==-==b 0相当于在大小等于力幅H 的常力作用下主物体m1的静位移,这时两个物体具有相同的位移量。
(2)固有频率))((2222=---=----cd d b d d c b w w w w 频率方程:可解得系统的固有频率ω1和ω2。
当激振频率ω=ω1或ω=ω2时,,A 、B à∞,系统发生共振。
22()()0b d cd w w ---=两个自由度的系统具有两个共振频率。
2、两个自由度系统的受迫振动(3)振幅比d d B A 2w -=两物体的振幅比与激振频率有关,不再是自由振动的主振型。
d d B A 21w -=dd 22w -当激振频率ω=ω1或ω=ω2时,或,与自由振动对应的主振型相同。
当系统发生各阶共振时,受迫振动是各阶主振型。
利用实验测固有频率和固有振型。
(4)振幅与激振频率的关系实例:12k k k ==122m m m==20202w w ===c d b ,1222112122k k k kk k k H Hb c d h m m m m m m m m+=======,=,,令0w ==为没有m2时,主质量系统的固有频率222241.3586.0w w w w ==,2、两个自由度系统的受迫振动0H b k =20220011212112A b w w a w w æö-ç÷èø==éùæö--êúç÷êúèøëû2200112112B b b w w ==éùæö--êúç÷êúèøëû引入静变形并代入b 、c 、d 、h ,得到两个物体关于静变形的振幅比:α, β10234-4-3-2-1ω01ω0ωω02振幅比│频率比曲线i 当ω=0时, α=β=1, 即A =B =b 0。
振动系统的自由度和阻尼对振动的影响如何一、振动系统的自由度振动系统的自由度是指系统在空间中独立运动的数量。
在物理学中,一个自由度通常指的是一个物体在某个参考系下可以独立运动的程度。
对于振动系统来说,自由度决定了系统的复杂程度和可能的状态。
1.单自由度系统:指系统在空间中只能沿一个方向或一个轴进行振动。
例如,一根弹簧振子就是一个单自由度系统。
2.多自由度系统:指系统在空间中有多个方向或多个轴可以进行振动。
例如,一个弹簧-质量系统,如果它可以在三维空间中的任意方向振动,则它是一个三自由度系统。
二、阻尼对振动的影响阻尼是振动系统中能量耗散的机制,它会使振动的振幅逐渐减小,直至振动停止。
阻尼对振动的影响主要表现在以下几个方面:1.阻尼比:阻尼比是描述阻尼特性的一个参数,定义为阻尼力与恢复力的比值。
阻尼比越大,系统的振动衰减越快,振幅减小得越迅速。
2.阻尼对振动幅值的影响:在初始阶段,阻尼对振动幅值的影响较小,但随着振动时间的增加,阻尼作用逐渐明显,振幅逐渐减小。
3.阻尼对振动周期的影响:阻尼对振动周期没有直接影响,振动周期仅与系统的弹性特性和质量有关。
4.阻尼对振动稳定性的影响:适当的阻尼可以提高振动的稳定性,防止系统发生过度振动或共振。
然而,过大的阻尼可能会导致系统过早地停止振动,影响某些应用中的振动性能。
三、自由度和阻尼的相互作用自由度和阻尼的相互作用表现在以下几个方面:1.自由度越多,系统可能出现的振动状态越多,同时阻尼对振动的影响也越复杂。
2.在多自由度系统中,各个自由度之间的振动可能会相互耦合,使得系统的振动特性更加复杂。
3.阻尼的存在可能会影响自由度之间的耦合关系,从而改变系统的振动特性。
综上所述,振动系统的自由度和阻尼对振动的影响是多方面的,它们相互作用决定了系统的振动特性。
了解这些知识点有助于我们更好地分析和解决实际问题。
习题及方法:1.习题:一个单自由度弹簧振子在无阻尼状态下做简谐振动,其质量为m,弹簧常数为k,振动的初始位移为A。
船体振动基础1第2章多自由度系统的振动第章多自由度系统的振一、引言二、两自由度系统的振动2上节课内容的回顾1.几个重要概念主振型第阶主振型第二阶主振型多自由度系统主振型,第一阶主振型,第二阶主振型基频,第一阶固有频率,第二阶固有频率,……主振动,模态个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P37)⎬⎫=++−=−++00)(2212111x k k x k xm x k x k k xm &&&&⎭)(2321222个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P41-43)m &&⎭⎬⎫=++−=−++0)(0)(23212222212111x k k x k xm x k x k k x&&①假设简谐形式的解振动时,两个质量按相同频率和相位角作简谐振动。
()()⎭⎬⎫+=+=θωθωt A x t A x n n sin sin 2211上节课内容的回顾将简谐振动解代入运动方程式上节课内容的回顾解特征方程式的根,可以得到:上节课内容的回顾将特征值代入②的振幅A1和振幅A2,得到对应于和的振幅A1和振幅A2之间的两个确定的比值:21ω上节课内容的回顾⑥主振动的确定。
z 系统以某一阶固有频率按其相应的主振型作振动,z 称为系统的主振动(1)(1)⎫第一阶主振动为:()1111(1)(1)(1)22111111sin()sin()sin x A t xA t A t ωθωθβωθ=+⎪⎬=+=+⎪⎭第二阶主振动为:(2)(2)1122sin()x A t ωθ⎫=+⎪()(2)(2)(2)22222122sin()sin x A t A t ωθβωθ⎬=+=+⎪⎭z 系统作主振动时,各点同时经过静平衡位置和到达最大偏离位置,z 以确定的频率和振型作简谐振动。
上节课内容的回顾⑦一般情况下自由振动的通解。
并非在任何情况下系统都会作主振动形式的运动,一般情况下系统运动方程的通解为上述两种主振动的叠加:o在一般情况下,系统的自由振动是两种不同频率的主振动的线性组合,其结果不一定是简谐振动。