必修1学案(对数函数部分)有答案
- 格式:doc
- 大小:589.00 KB
- 文档页数:7
4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。
4.4.2 对数函数的图象和性质第1课时对数函数的图象和性质(一)学习目标 1.初步掌握对数函数的图象和性质.2.会类比指数函数研究对数函数的性质.3.掌握对数函数的图象和性质的简单应用.4.了解反函数的概念及它们的图象特点.知识点一对数函数的图象和性质对数函数y=log a x(a>0,且a≠1)的图象和性质如下表y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈『1,+∞)时,y∈『0,+∞)x∈(0,1)时,y∈(0,+∞);x∈『1,+∞)时,y∈(-∞,0』对称性函数y=log a x与y=1logax的图象关于x轴对称思考对数函数图象的“上升”或“下降”与谁有关?『答案』底数a与1的关系决定了对数函数图象的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点二反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.它们的定义域与值域正好互换.1.若函数y =f (x )是函数y =3x 的反函数,则f ⎝⎛⎭⎫12的值为________. 『答 案』 -log 32『解 析』 y =f (x )=log 3x ,∴f ⎝⎛⎭⎫12=log 312=-log 32. 2.函数y =lg(x +1)的图象大致是________.(填序号)『答 案』 ③『解 析』 由底数大于1可排除①,②,y =lg(x +1)可看作是y =lg x 的图象向左平移1个单位长度(或令x =0得y =0,而且函数为增函数).3.已知函数y =a x (a >0,且a ≠1)在R 上是增函数,则函数y =log a x 在(0,+∞)上是________函数.(填“增”或“减”) 『答 案』 增『解 析』 因为函数y =a x 在R 上是增函数, 所以a >1,所以y =log a x 在(0,+∞)上是增函数.4.函数y =log a x +1(a >0,且a ≠1)的图象过定点________. 『答 案』 (1,1)『解 析』 因为对数函数y =log a x 的图象过定点(1,0), 所以函数y =log a x +1的图象过定点(1,1).一、对数函数的图象及应用例1 (1)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 『答 案』 B『解 析』 作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. (2)若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b =________,c =________.『答 案』 -2 2『解 析』 ∵函数的图象恒过定点(3,2), ∴将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,且a ≠1时,log a 1=0恒成立, ∴c =2,3+b =1,∴b =-2,c =2.(3)已知f (x )=log a |x |(a >0,且a ≠1)满足f (-5)=1,试画出函数f (x )的图象. 解 因为f (-5)=1,所以log a 5=1,即a =5,故f (x )=log 5|x |=⎩⎪⎨⎪⎧log 5x ,x >0,log 5(-x ),x <0.所以函数y =log 5|x |的图象如图所示.(教师) 延伸探究1.在本例中,若条件不变,试画出函数g (x )=log a |x -1|的图象. 解 因为f (x )=log 5|x |,所以g (x )=log 5|x -1|,如图,g (x )的图象是由f (x )的图象向右平移1个单位长度得到的.2.在本例中,若条件不变,试画出函数h (x )=|log a x |的图象. 解 因为a =5,所以h (x )=|log 5x |.h (x )的图象如图所示.反思感悟对数函数图象的变换方法(1)作y=f(|x|)的图象时,保留y=f(x)(x≥0)图象不变,x<0时y=f(|x|)的图象与y=f(x)(x>0)的图象关于y轴对称.(2)作y=|f(x)|的图象时,保留y=f(x)的x轴及上方图象不变,把x轴下方图象以x轴为对称轴翻折上去即可.(3)有关对数函数平移也符合“左加右减,上加下减”的规律.(4)y=f(-x)与y=f(x)关于y轴对称,y=-f(x)与y=f(x)关于x轴对称,y=-f(-x)与y=f(x)关于原点对称.跟踪训练1(1)函数f(x)=log a|x|+1(a>1)的图象大致为()『答案』 C『解析』∵函数f(x)=log a|x|+1(a>1)是偶函数,∴f(x)的图象关于y轴对称,当x>0时,f(x)=log a x+1是增函数;当x<0时,f(x)=log a(-x)+1是减函数,又∵图象过(1,1),(-1,1)两点,结合选项可知选C.(2)画出函数y=|log2(x+1)|的图象,并写出函数的值域及单调区间.解函数y=|log2(x+1)|的图象如图所示.由图象知,其值域为『0,+∞),单调减区间是(-1,0』,单调增区间是(0,+∞).二、比较大小例2(1)若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<c B.a<b<cC.c<b<a D.b<c<a『答案』 D『解析』因为函数y=log4x在(0,+∞)上是增函数,a=log23=log49>log46>1,log32<1,所以b<c<a.(2)比较下列各组中两个值的大小:①log31.9,log32;②log23,log0.32;③log aπ,log a3.14(a>0,a≠1);④log50.4,log60.4.解①因为y=log3x在(0,+∞)上是增函数,所以log31.9<log32.②因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.③当a>1时,函数y=log a x在(0,+∞)上是增函数,则有log aπ>log a3.14;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,则有log aπ<log a3.14.综上所得,当a>1时,log aπ>log a3.14;当0<a<1时,log aπ<log a3.14.④在同一直角坐标系中,作出y=log5x,y=log6x的图象,再作出直线x=0.4(图略),观察图象可得log50.4<log60.4.反思感悟比较对数值大小时常用的四种方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练2 比较大小:(1)log a 5.1,log a 5.9(a >0,且a ≠1); (2)log 3π,log 23,log 3 2.解 (1)当a >1时,y =log a x 在(0,+∞)上是增函数, 又5.1<5.9,所以log a 5.1<log a 5.9;当0<a <1时,y =log a x 在(0,+∞)上是减函数, 又5.1<5.9,所以log a 5.1>log a 5.9. 综上,当a >1时,log a 5.1<log a 5.9; 当0<a <1时,log a 5.1>log a 5.9. (2)∵log 23=12log 23,又1<log 23<2,∴12<log 23<1.又log 32=12log 32<12,log 3π>1,∴log 3π>log 23>log 3 2.1.函数y =log a (x -1)(0<a <1)的图象大致是( )『答 案』 A『解 析』 ∵0<a <1,∴y =log a x 在(0,+∞)上单调递减,故排除C ,D ;又函数y =log a (x -1)的图象是由y =log a x 的图象向右平移一个单位长度得到的,故A 正确. 2.若a =20.2,b =log 43.2,c =log 20.5,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a『答 案』 A『解 析』 ∵a =20.2>1>b =log 43.2>0>c =-1,∴a >b >c .3.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 67『答 案』 D『解 析』 因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x 为增函数,所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错,log 76<1<log 67,D 正确.4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎪⎫32,23,则a =________.『答 案』2『解 析』 因为点⎝ ⎛⎭⎪⎫32,23在y =f (x )的图象上,所以点⎝ ⎛⎭⎪⎫23,32在y =a x 的图象上,则有32=23a ,所以a 2=2,又因为a >0,a = 2.5.设a >1,函数f (x )=log a x 在区间『a,2a 』上的最大值与最小值之差为12,则a =________.『答 案』 4『解 析』 ∵a >1,∴f (x )=log a x 在『a,2a 』上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴12a =2,∴a =4.1.知识清单:(1)对数函数的图象及性质.(2)利用对数函数的图象及性质比较大小. 2.方法归纳:图象变换、数形结合法. 3.常见误区:作对数函数图象易忽视底数a >1与0<a <1两种情况.。
第2课时 对数的运算性质及换底公式 内 容 标 准学 科 素 养 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算.2.了解换底公式、能用换底公式将一般对数化为自然对数或常用对数. 准确定义概念 熟练等价转化 提升数学运算授课提示:对应学生用书第52页[基础认识]知识点一 对数的运算性质预习教材P 80-82,思考并完成以下问题当m >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立? 提示:不一定成立.知识梳理 对数的运算性质 条件 a >0,且a ≠1,M >0,N >0性质 log a (MN )=log a M +log a Nlog a M N=log a M -log a N log a M n =n log a M (n ∈R )思考并完成以下问题(1)换底公式中的底数a 是特定数还是任意数?提示:是大于0且不等于1的任意数.(2)换底公式有哪些作用?提示:利用换底公式可以把不同底数的对数化为同底数的对数,便于运用对数的运算性质进行化简、求值.知识梳理log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 2.用换底公式推得的两个常用结论:(1)log a b ·log b a =1(a >0,且a ≠1;b >0,且b ≠1);(2)log am b n =n mlog a b (a >0,且a ≠1;b >0;m ≠0). 知识点三 常用结论思考并完成以下问题结合教材P 81-82,例4和例5,你认为怎样利用对数的运算性质计算对数式的值?提示:第一步:将积、商、幂、方根的对数直接运用运算性质转化.第二步:利用对数的性质化简、求值.知识梳理 常用结论由换底公式可以得到以下常用结论:(1)log a b =1log b a; (2)log a b ·log b c ·log c a =1;(3)log an b n =log a b ;(4)log an b m =m nlog a b ; (5)log 1ab =-log a b . 思考:M ·N >0,则式子log a (M ·N )=log a M +log a N 成立吗?提示:不一定成立.当M >0,N >0时成立;当M <0,N <0时不成立.2.换底公式一般在什么情况下应用?提示:(1)在运算过程中,出现不能直接用计算器或查表获得对数值时,可化成以10为底的常用对数进行运算.(2)在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个实数为底的对数,再根据运算法则进行化简与求值.[自我检测]1.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数是( )①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a ⎝⎛⎭⎫x y =log a x ÷log a y ; ④log a (xy )=log a x ·log a y .A .0B .1C .2D .3解析:根据对数运算性质知4个式子均不正确,③应为log a x y=log a x -log a y ,④应为log a (xy )=log a x +log a y .答案:A2.(log 29)×(log 34)=( ) A.14 B.12C .2D .4 解析:∵log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4. 答案:D3.若lg a 与lg b 互为相反数,则a 与b 的关系式为________.解析:∵lg a +lg b =0,∴lg(ab )=0,∴ab =1.答案:ab =1授课提示:对应学生用书第52页探究一 利用对数的运算性质化简求值[例1] 计算下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)lg 27+lg 8-3lg 10lg; (3)lg 52+23lg 8+lg 5·lg 20+(lg 2)2. [思路点拨] 灵活运用对数的运算性质求解. [解析] (1)法一:lg 14-2lg 73+lg 7-lg 18 =lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二:lg 14-2lg 73+lg 7-lg 18 =lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)lg 27+lg 8-3lg 10lg =lg (33)12+lg 23-3lg 1012lg 3×2210=32lg 3+3lg 2-32lg 10lg 3+2lg 2-1=32(lg 3+2lg 2-1)lg 3+2lg 2-1=32. (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.方法技巧 1.在应用对数运算性质时应注意保证每个对数式都有意义,应避免出现lg(-5)2=2lg(-5)等形式的错误,同时应注意对数性质的逆用在解题中的应用.譬如在常用对数中,lg 2=1-lg 5,lg 5=1-lg 2的运用.2.对于底数相同的对数式的化简,常用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成对数的和(差).3.对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.跟踪探究 lg 243lg 9的值. 解析:lg 243lg 9=lg 35lg 32=5lg 32lg 3=52. 探究二 利用换底公式化简、求值[例2] 已知lg 2=a ,lg 3=b ,则log 312=( )A.2a +b bB.2a +b aC.a 2a +bD.b 2a +b[思路点拨] 把log 312利用换底公式:log 312=lg 12lg 3建立log 312同a ,b 的关系. [解析] ∵log 312=lg 12lg 3=lg 3+lg 4lg 3=lg 3+2lg 2lg 3, 又lg 2=a ,lg 3=b ,∴log 312=b +2a b.[答案] A延伸探究 把题设条件换成“log 23=b a”试求相应问题. 解析:∵log 23=b a, ∴log 312=log 212log 23=log 23+2log 23=b a +2b a=b +2a b. 方法技巧 1.换底公式的主要用途在于将一般对数化为常用对数或自然对数,然后查表求值,解决一般对数求值的问题.2.换底公式的本质是化异底为同底,这是解决对数问题的基本方法.跟踪探究 2.(1)已知log 23=a,3b =7,用a ,b 表示log 1256;(2)已知log 32=a ,log 37=b ,试用a ,b 表示log 28498. 解析:(1)∵3b =7,∴b =log 37.log 1256=log 356log 312=3log 32+log 371+2log 32=3a +b 1+2a=3+ab a +2. (2)∵log 32=a ,log 37=b ,log 28498=log 3498log 328=log 349-log 38log 34+log 37 =2log 37-3log 322log 32+log 37=2b -3a 2a +b. 探究三 换底公式、对数运算性质的综合应用[例3] (1)设3x =4y =36,求2x +1y的值; (2)若26a =33b =62c ≠1,求证:1a +2b =3c. [思路点拨] 用对数式表示出x ,y ,a ,b ,c 再代入所求(证)式.[解析] (1)∵3x =4y =36,∴x =log 336,y =log 436,∴2x =2log 336=2log 3636log 363=2log 363=log 369, 1y =1log 436=1log 3636log 364=log 364. ∴2x +1y=log 369+log 364=log 3636=1. (2)证明:设26a =33b =62c =k (k >0,且k ≠1).则6a =log 2k ≠0,3b =log 3k ≠0,2c =log 6k ≠0.∴1a =6log 2k =6log k 2,1b =3log 3k=3log k 3, 1c =2log 6k=2log k 6, ∴1a +2b =6log k 2+2×3log k 3=log k 26+log k 36=log k 66=6log k 6=3c, ∴1a +2b =3c. 方法技巧 1.带有附加条件的对数式或指数式的求值问题,需要对已知条件和所求式子进行化简转化,原则是化为同底的对数,以便利用对数的运算性质.要整体把握 对数式的结构特征,灵活运用指数式与对数式的互化.2.解对数方程时,先要对数有意义(真数大于0,底数大于0且不等于1)求出未知数的取值范围,去掉对数值符号后,再解方程,此时只需检验其解是否在其取值范围内即可.跟踪探究 .(1)12(lg x -lg 3)=lg 5-12lg(x -10); (2)lg x +2log (10x )x =2;(3)log (x 2-1)(2x 2-3x +1)=1.解析:(1)方程中的x 应满足x >10,原方程可化为lgx 3=lg 5x -10, ∴x 3=5x -10,即x 2-10x -75=0.解得x =15或x =-5(舍去),经检验,x =15是原方程的解.(2)首先,x >0且x ≠110, 其次,原方程可化为lg x +2lg x1+lg x =2, 即lg 2x +lg xt =lg x ,则t 2+t -2=0,解得t =1或t =-2,即lg x =1或lg x =-2.∴x =10或x =1100. 经检验,x =10,x =1100都是原方程的解. (3)首先,x 2-1>0且x 2-1≠1,即x >1或x <-1且x ≠±2.由2x 2-3x +1>0,得x <12或x >1. 综上可知,x >1或x <-1且x ≠±2.其次,原方程可化为x 2-1=2x 2-3x +1.∴x 2-3x +2=0,∴x =1或x =2.又∵x >1或x <-1且x ≠±2,∴x =2.经检验,x =2是原方程的解.授课提示:对应学生用书第53页[课后小结]1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.[素养培优]忽略对数的真数为正致错易错案例:lg(x +1)+lg x =lg 6易错分析:解对数方程时要注意验根,以保证所得方程的根满足对数的真数为正数,底数为不等于1的正数,否则得到的新方程与原方程不等价,产生了增根,考查概念、定义、数学运算的学科素养.自我纠正:∵lg(x+1)+lg x=lg(x2+x)=lg 6,∴x2+x=6,解得x=2或x=-3,经检验x =-3不符合题意,∴x=2.。
2.2 对数函数解读对数概念及运算对数是中学数学中重要的内容之一,理解对数的定义,掌握对数的运算性质是学习对数的重点内容.现梳理这部分知识,供同学们参考.一、对数的概念对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .例1 计算:log 22+log 51+log 3127+9log 32. 分析 根据定义,再结合对数两个恒等式即可求值.解 原式=1+0+log 33-3+(3log 32)2=1-3+4=2.点评 解决此类问题关键在于根据幂的运算法则将指数式和对数式化为同底数.二、对数的运算法则常用的对数运算法则有:对于M >0,N >0.(1)log a (MN )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M .例2 计算:lg 14-2lg 73+lg 7-lg 18. 分析 运用对数的运算法则求解.解 由已知,得原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.点评 对数运算法则是进行对数运算的根本保证,同学们必须能从正反两方面熟练应用.三、对数换底公式根据对数的定义和运算法则 可以得到对数换底公式:log a b =log c b log c a(a >0且a ≠1,c >0且c ≠1,b >0). 由对数换底公式又可得到两个重要结论:(1)log a b ·log b a =1;(2)log an b m =m nlog a b . 例3 计算:(log 25+log 4125)×log 32log 35. 分析 在利用换底公式进行化简求值时,一般是根据题中对数式的特点选择适当的底数进行换底,也可选择以10为底进行换底. 解 原式=(log 25+32log 25)×log 322log 35=52log 25×12log 52=54. 点评 对数的换底公式是“同底化”的有力工具,同学们要牢记.通过上面讲解,同学们可以知道对数的定义是对数式和指数式互化的依据,正确进行它们之间的相互转换是解题的有效途径.对数的运算性质,同学们要熟练掌握,在应用过程中避免错误,将公式由“正用”“逆用”逐步达到“活用”的境界.数换底公式的证明及应用设a >0,c >0且a ≠1,c ≠1,N >0,则有log a N =log c N log c a,这个公式称为对数的换底公式,它在对数的运算中有着重要的应用,课本中没有给出证明,现证明如下:证明 记p =log a N ,则a p =N .**式两边同时取以c 为底的对数(c >0且c ≠1)得log c a p =log c N ,即p log c a =log c N .所以p =log c N log c a ,即log a N =log c N log c a. 推论1:log a b ·log b a =1.推论2:log an b m =m nlog a b (a >0且a ≠1,b >0). 例4 (1)已知log 189=a,18b =5,求log 3645的值;(2)求log 23·log 34·log 45·…·log 6364的值.解 (1)因为log 189=a,18b =5,所以lg 9lg 18=a . 所以lg 9=a lg 18,lg 5=b lg 18.所以log 3645=lg (5×9)lg 1829=lg 5+lg 92lg 18-lg 9 =b lg 18+a lg 182lg 18-a lg 18=b +a 2-a. (2)log 23·log 34·log 45·…·log 6364=lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg 64lg 63=lg 64lg 2=6lg 2lg 2=6. 点评 对数运算法则中,对数式都是同底的,凡不同底的对数运算,都需要用换底公式将底统一,一般统一成常用对数.例5 已知12log 8a +log 4b =52,log 8b +log 4a 2=7,求ab 的值. 解 由已知可得⎩⎨⎧16log 2a +12log 2b =52,13log 2b +log 2a =7, 即⎩⎪⎨⎪⎧ log 2a +3log 2b =15,3log 2a +log 2b =21.解得⎩⎪⎨⎪⎧log 2a =6,log 2b =3. 所以a =26,b =23.故ab =26·23=512.点评 发现底数“4”,“8”与“2”的关系,将底数统一成“2”,解决问题比较简单.此外还有下面的关系式:log N M =log a M log a N =log b M log b N; log a M ·log b N =log a N ·log b M ;log a M log b M =log a N log b N=log a b ;N log a M =M log a N .数函数图象及性质的简单应用对数函数图象是对数函数的一种表达形式,形象显示了函数的性质,为研究它的数量关系提供了“形”的直观性.它是探求解题思路、获得问题结果的重要途径.能准确地作出对数函数的图象是利用平移、对称的变换来研究复杂函数的性质的前提,而数形结合是研究与对数函数的有关问题的常用思想.一、求函数的单调区间例6 画出函数y =log 2x 2的图象,并根据图象指出它的单调区间.解 当x ≠0时,函数y =log 2x 2满足f (-x )=log 2(-x )2=log 2x 2=f (x ),所以y =log 2x 2是偶函数,它的图象关于y 轴对称.当x >0时,y =log 2x 2=2log 2x ,因此先画出y =2log 2x (x >0)的图象为C 1,再作出C 1关于y 轴对称的图象C 2,C 1与C 2构成函数y =log 2x 2的图象,如图所示.由图象可以知道函数y =log 2x 2的单调减区间是(-∞,0),单调增区间是(0,+∞). 点评 作图象时一定要考虑定义域,否则会导致求出错误的单调区间,同时在确定单调区间时,要注意增减区间的分界点,特别要注意区间的开与闭问题.二、利用图象求参数的值例7 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13 B. 2 C.22 D .2 解析 当a >1时,f (x )=log a (x +1)的图象如图所示.f (x )在[0,1]上是单调增函数,且值域为[0,1],所以f (1)=1,即log a (1+1)=1,所以a =2,当0<a <1时,其图象与题意不符,故a 的值为2,故选D.答案 D点评 (1)当对数的底数不确定时要注意讨论;(2)注意应用函数的单调性确定函数的最值(值域).三、利用图象比较实数的大小例8 已知log m 2<log n 2,m ,n >1,试确定实数m 和n 的大小关系.解 在同一直角坐标系中作出函数y =log m x 与y =log n x 的图象如图所示,再作x =2的直线,可得m >n .点评 不同底的对数函数图象的规律是:(1)底都大于1时,底大图低(即在x >1的部分底越大图象就越接近x 轴);(2)底都小于1时,底大图高(即在0<x <1的部分底越大图象就越远离x 轴).四、利用图象判断方程根的个数例9 已知关于x 的方程|log 3x |=a ,讨论a 的值来确定方程根的个数.解 因为y =|log 3x |=⎩⎪⎨⎪⎧log 3x , x >1,-log 3x , 0<x <1, 在同一直角坐标系中作出函数与y =a 的图象,如图可知:(1)当a <0时,两个函数图象无公共点,所以原方程根的个数为0;(2)当a =0时,两个函数图象有一个公共点,所以原方程根有1个;(3)当a >0时,两个函数图象有两个公共点,所以原方程根有2个.点评 利用图象判断方程根的个数一般都是针对不能将根求出的题型,与利用图象解不等式一样,需要先将方程等价转化为两端对应的函数为基本函数(最好一端为一次函数),再作图象.若含有参数,要注意对参数的讨论,参数的取值不同,函数图象的位置也就不同,也就会引起根的个数不同. 三类对数大小的比较 一、底相同,真数不同 例10 比较log a 2与log a 33的大小.分析 底数相同,都是a ,可借助于函数y =log a x 的单调性比较大小.解 由(2)6=8<(33)6=9,得2<33.当a >1时,函数y =log a x 在(0,+∞)上是增函数,故log a 2<log a 33;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,故log a 2>log a 33.点评 本题需对底数a 的范围进行分类讨论,以确定以a 为底的对数函数的单调性,从而应用函数y =log a x 的单调性比较出两者的大小.二、底不同,真数相同例11 比较log 0.13与log 0.53的大小.分析 底数不同但真数相同,可在同一坐标系中画出函数y =log 0.1x 与y =log 0.5x 的图象,借助于图象来比较大小;或应用换底公式将其转化为同底的对数大小问题.解 方法一 在同一坐标系中作出函数y =log 0.1x 与y =log 0.5x 的图象,如右图.在区间(1,+∞)上函数y =log 0.1x 的图象在函数y =log 0.5x 图象的上方,故有log 0.13>log 0.53.方法二 log 0.13=1log 30.1,log 0.53=1log 30.5. 因为3>1,故y =log 3x 是增函数,所以log 30.1<log 30.5<0.所以1log 30.1>1log 30.5. 即log 0.13>log 0.53.方法三 因为函数y =log 0.1x 与y =log 0.5x 在区间(0,+∞)上都是减函数,故log 0.13>log 0.110=-1,log 0.53<log 0.52=-1,所以log 0.13>log 0.53.点评 方法一借助于对数函数的图象;方法二应用换底公式将问题转化为比较两个同底数的对数大小;方法三借助于中间值来传递大小关系.三、底数、真数均不同例12 比较log 323与log 565的大小. 分析 底数、真数均不相同,可通过考察两者的范围来确定中间值,进而比较大小. 解 因为函数y =log 3x 与函数y =log 5x 在(0,+∞)上都是增函数,故log 323<log 31=0,log 565>log 51=0, 所以log 323<log 565. 点评 当底数、真数均不相同时,可找中间量(如1或0等)传递大小关系,从而比较出大小.综上所述,比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论,如例10;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小,如例11;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较,如例12.学对数给你提个醒对数函数是函数的重要内容之一,由于同学们对概念、定义域、值域、图象等知识点掌握得不够好,经常出现解题错误,现将这些错误进行归纳并举例说明.一、忽视0没有对数例13 求函数y =log 3(1+x )2的定义域.错解 对于任意的实数x ,都有(1+x )2≥0,所以原函数的定义域为R .剖析 只考虑到负数没有对数.事实上,由对数的定义可知,零和负数都没有对数. 正解 {x |x ≠-1}二、忽视1的对数为0例14 求函数y =1log 2(2x +3)的定义域. 错解 由2x +3>0,得x >-32, 所以定义域为{x |x >-32}. 剖析 当2x +3=1时,log 21=0,分母为0没有意义,上述解法忽视了这一点.正解 {x |x >-32且x ≠-1}三、忽视底数的取值范围例15 已知log (2x +5)(x 2+x -1)=1,则x 的值是( )A .-4B .-2或3C .3D .-4或5错解 由2x +5=x 2+x -1,化简得x 2-x -6=0,解得x =-2或x =3.故选B.剖析 忽视了底数有意义的条件:2x +5>0且2x +5≠1.当x =-2时,2x +5=1,应舍去,只能取x =3.正解 C四、忽视真数大于零例16 已知lg x +lg y =2lg(x -2y ),求log 2x y的值. 错解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,即x y =1或x y =4, 所以log 2x y =0,或log 2x y=4. 剖析 错误的原因在于忽视了原式中的三个对数式隐含的条件,x >0,y >0,x -2y >0,所以x >2y >0,所以x =y 不成立.正解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,因为x >0,y >0,x -2y >0,所以x =y 应舍去,所以x =4y ,即x y=4, 所以log 2x y=4. 五、对数运算性质混淆例17 下列运算:(1)log 28log 24=log 284; (2)log 28=3log 22;(3)log 2(8-4)=log 28-log 24;(4)log 243·log 23=log 2(43×3).其中正确的有( ) A .4个 B .3个C .2个D .1个错解 A剖析 (1)log 28log 24真数8与4不能相除;(3)中log 2(8-4)不能把log 乘进去运算,没有这种运算的,运算log 284=log 28-log 24才是对的;(4)错把log 提出来运算了,也没有这种运算,正确的只有(2).正解 D六、忽视对含参底数的讨论例18 已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,求a 的值.错解 由题意得log a 4-log a 2=log a 2=1,所以a =2.剖析 对数函数的底数含有参数a ,错在没有讨论a 与1的大小关系而直接按a >1解题. 正解 (1)若a >1,函数y =log a x (2≤x ≤4)为增函数,由题意得log a 4-log a 2=log a 2=1,所以a =2,又2>1,符合题意.(2)若0<a <1,函数y =log a x (2≤x ≤4)为减函数,由题意得log a 2-log a 4=log a 12=1, 所以a =12,又0<12<1,符合题意, 综上可知a =2或a =12.巧借对数函数图象解题数形结合思想,就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合.通过对图形的认识、数形转化,来提高思维的灵活性、形象性、直观性,使问题化难为易、化抽象为具体.它包含“以形助数”和“以数辅形”两个方面.一、利用数形结合判断方程解的范围方程解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.例1 方程lg x+x=3的解所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)答案 C解在同一平面直角坐标系中,画出函数y=lg x与y=-x+3的图象(如图所示).它们的交点横坐标x0显然在区间(1,3)内,由此可排除选项A、D.实际上这是要比较x0与2的大小.当x0=2时,lg x0=lg 2,3-x0=1.由于lg 2<1,因此x0>2,从而判定x0∈(2,3).点评本题是通过构造函数用数形结合法求方程lg x+x=3的解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算x0的邻近两个函数值,通过比较其大小进行判断.二、利用数形结合求解的个数例2 已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lg x的根的个数是________.解析构造函数g(x)=lg x,在同一坐标系中画出f(x)与g(x)的图象,如图所示,易知有4个根.答案 4点评本题学生极易填3,其原因是学生作图不标准,尤其是在作对数函数的图象时没有考虑到当x=10时,y=1.因此,在利用数形结合法解决问题时,要注意作图的准确性.三、利用数形结合解不等式例3 使log2x<1-x成立的x的取值范围是______________________________________.解析构造函数f(x)=log2x,g(x)=1-x,在同一坐标系中作出两者的图象,如图所示,直接从图象中观察得到x∈(0,1).答案(0,1)点评用数形结合的方法去分析解决问题,除了会读图外,还要会画图,绘制图形既是利用数形结合方法的需要,也是培养我们动手能力的需要.数函数常见题型归纳一、考查对数函数的定义例4 已知函数f (x )为对数函数,且满足f (3+1)+f (3-1)=1,求f (5+1)+f (5-1)的值.解 设对数函数f (x )=log a x (a >0,a ≠1),由已知得log a (3+1)+log a (3-1)=1,即log a [(3+1)×(3-1)]=1⇒a =2.所以f (x )=log 2x (x >0).从而得f (5+1)+f (5-1)=log 2[(5+1)×(5-1)]=2.二、考查对数的运算性质例5 log 89log 23的值是( ) A.23 B .1 C.32D .2 解析 原式=log 29log 28·1log 23=23·log 23log 22·1log 23=23. 答案 A三、考查指数式与对数式的互化例6 已知log a x =2,log b x =3,log c x =6,求log abc x 的值.解 由已知,得a 2=x ,b 3=x ,c 6=x ,所以a =x 12,b =x 13,c =x 16. 于是,有abc =x 12+13+16=x 1, 所以x =abc ,则log abc x =1.四、考查对数函数定义域和值域(最值)例7 (江西高考)若f (x )=1log 12(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎦⎤-12,0 C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 答案 A解析 要使f (x )有意义,需log 12(2x +1)>0=log 121, ∴0<2x +1<1,∴-12<x <0. 例8 已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________,最小值为________.解析 由已知,得函数g (x )的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3.且g (x )=f 2(x )+f (x 2) =(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6.则当log 3x =0,即x =1时,g (x )有最小值g (1)=6;当log 3x =1,即x =3时,g (x )有最大值g (3)=13.答案 13 6五、考查单调性例9 若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 为( )A.24B.22C.14D.12解析 由于0<a <1,所以f (x )=log a x (0<a <1)在区间[a,2a ]上递减,在区间[a,2a ]上的最大值为f (a ),最小值为f (2a ),则f (a )=3f (2a ),即log a a =3log a (2a )⇒a =24. 答案 A 六、考查对数函数的图象例10 若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是________. 解析 由已知,不等式可化为x 2<log a x .所以不等式x 2<log a x 在(0,12)内恒成立,可转化为当x ∈(0,12)时, 函数y =x 2的图象在函数y =log a x 图象的下方,如图所示.答案 [116,1) 点评 不等式x 2<log a x 左边是一个二次函数,右边是一个对数函数,不可能直接求解,充分发挥图象的作用,则可迅速达到求解目的.巧比对数大小一、中间值法若两对数底数不相同且真数也不相同时,比较其大小通常运用中间值作媒介进行过渡. 理论依据:若A >C ,C >B ,则A >B .例11 比较大小:log 932,log 8 3. 解 由于log 932<log 93=14=log 822<log 83, 所以log 932<log 8 3. 点评 以14为纽带,建立起放缩的桥梁,解题时常通过观察确定中间值的选取. 二、比较法比较法是比较对数大小的常用方法,通常有作差和作商两种策略.理论依据:(1)作差比较:若A -B >0,则A >B ;(2)作商比较:若A ,B >0,且A B>1,则A >B . 例12 比较大小:(1)log 47,log 1221;(2)log 1.10.9,log 0.91.1.解 (1)log 47-log 1221=(log 47-1)-(log 1221-1)=log 474-log 1274=1log 744-1log 7412, 由于0<log 744<log 7412,所以1log 744>1log 7412,即log 47>log 1221. (2)由于log 1.10.9,log 0.91.1都小于零,所以|log 1.10.9||log 0.91.1|=(log 1.10.9)2=(-log 1.10.9)2 =(log 1.1109)2>(log 1.11110)2=1, 故|log 1.10.9|>|log 0.91.1|,所以log 1.10.9<log 0.91.1.点评 将本例(1)推广延伸为:若1<A <B ,C >0,则log A B >log AC (BC ),进而可比较形如此类对数的大小.三、减数法将对数值的大概范围确定后,两边同减去一个数,通过局部比较大小.理论依据:若A -C >B -C ,则A >B .例13 比较大小:log n +2(n +1),log n +1n (n >1).解 因为log n +2(n +1)-1=log n +2n +1n +2>log n +2n n +1>log n +1n n +1=log n +1n -1.所以log n +2(n +1)>log n +1n .点评 将本例推广延伸为:若1<A <B ,C >0,则log A +C (B +C )>log A B ,进而可比较形如此类对数的大小.四、析整取微法将对数的整数部分分别析取出来,通过比较相应小数部分的大小使得问题获解. 理论依据:若A =log a M =k +x ,B =log b N =k +y ,且x >y ,则A >B .例14 比较大小:log 123,log 138. 解 令log 123=-2+x ,log 138=-2+y , 于是2-(-2+x )=3,3-(-2+y )=8,则2-x -3-y =34-89<0,故2-x <3-y . 两边同时取对数,化简得x lg 2>y lg 3,则x y >lg 3lg 2>1,即x >y ,故log 123>log 138. 点评 这种方法便于操作,容易掌握,并且所涉及的知识又都是通性通法,有利于“回归课本,夯实基础”,此法值得深思.例15 对于函数y =f (x ),x ∈D ,若存在一常数c ,对任意x 1∈D ,存在惟一的x 2∈D ,使f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .已知f (x )=lg x ,x ∈[10,100],则函数f (x )=lg x 在[10,100]上的均值为( )A.32B.34C.110D .10 分析 该题通过定义均值的方式命题,以定义给出题目信息,是当前的一种命题趋势.其本质是考查关于对数和指数的运算性质和对定义的理解与转化.解析 首先从均值公式可得lg (x 1x 2)=2c ,所以x 1x 2=102c =100c .因为x 1,x 2∈[10,100],所以x 1x 2∈[100,10 000].所以100≤100c ≤ 10 000.所以1≤c ≤2.从选项看可知成为均值的常数可为32.故选A.答案 A例16 函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A .3 B.34 C .2 D.23分析 对函数的性质的分析研究一直是高中数学的重点,尤其是二次函数、指数函数和对数函数等重点函数的形态研究.本题正是以函数y =log 2x 为基础而编制,从定性分析和定量的计算中刻划a ,b 的关系.结合函数的图象(图象是函数性质的立体显示)数形结合易于寻找、确定二者的关系.解析 画出函数图象如图所示.由log 2a =-2得a =14.由log 2b =2得b =4.数形结合知a ∈[14,1],b ∈[1,4].考虑函数定义域,满足值域[0,2]的取值情况可知,当b =1,a =14时,b -a 的最小值为1-14=34.故选B.答案 B解题要学会反思解题中的反思是完善解题思路的有效方法,面对一道较为综合的题,寻找解题思路时,想一步到位,往往不太现实;边解边反思,逐步产生完善、正确的解题思路,却是可行的,请看:题目:已知函数f (x )=log m x -3x +3,试问:是否存在正数α,β,使f (x )在[α,β]上的值域为[log m (β-4),log m (α-4)]?若存在,求出α,β的值;若不存在,说明理由.甲:在[α,β]上的值域为[log m (β-4),log m (α-4)],也就是⎩⎪⎨⎪⎧log mα-3α+3=log m (β-4),log mβ-3β+3=log m(α-4)⇒⎩⎪⎨⎪⎧αβ-5α+3β=9,αβ-5β+3α=9⇒α=β,与α<β矛盾,故不存在.乙:你的解答不全面,你的求解建立在一个条件的基础上,就是函数f (x )是增函数,而题目并没有说明这个函数是增函数呀!丙:没错,应该对m 进行讨论. 设0<α≤x 1<x 2≤β,由于x 1-3x 1+3-x 2-3x 2+3=6(x 1-x 2)(x 1+3)(x 2+3)<0,那么0<x 1-3x 1+3<x 2-3x 2+3.讨论:(1)若0<m <1,则log m x 1-3x 1+3>log m x 2-3x 2+3,即f (x 1)>f (x 2),得f (x )为减函数.(2)若m >1,则log m x 1-3x 1+3<log m x 2-3x 2+3,即f (x 1)<f (x 2),得f (x )为增函数. 若m 存在,当0<m <1时,则 ⎩⎪⎨⎪⎧log mβ-3β+3=log m(β-4),log mα-3α+3=log m(α-4)⇒⎩⎪⎨⎪⎧β2-2β-9=0,α2-2α-9=0. 显然α,β是方程x 2-2x -9=0的两根,由于此方程的两根中一根为正,另一根为负,与0<α<β不符,因此m 不存在;当m >1时,就是甲的解题过程,同样满足条件的α,β不存在.老师:乙和丙实质上是对甲的解法做了个反思.通过你们的讨论可以看出,反思的作用相当大,它可以使思路逐步完善,最终形成完美的解题过程.对数函数高考考点例析对数函数是高中数学函数知识的重要组成部分,关于对数函数的考查在高考中一直占有重要的地位.下面我们针对近几年高考中考查对数函数知识的几个着眼点作一一剖析,希望对大家的学习有所帮助.考点一 判断图象交点个数1.(湖南高考)函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .1B .2C .3D .4解析 作出函数f (x )与g (x )的图象,如图所示,由图象可知:两函数图象的交点有3个. 答案 C考点二 函数单调性的考查2.(江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝⎛⎭⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝⎛⎭⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝⎛⎭⎫-12,+∞. 答案 ⎝⎛⎭⎫-12,+∞考点三 求变量范围3.(辽宁高考)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).答案 D考点四 比较大小(一)图象法4.(天津高考)设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c=log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析由2a>0,∴log 12a >0,∴0<a <1.同理0<b <1,c >1, ∴c 最大在同一坐标系中作出y =2x ,y =⎝⎛⎭⎫12x ,y =log 12x 的图象如图所示, 观察得a <b .∴a <b <c . 答案 A (二)排除法当我们面临的问题不易从正面入手直接挑选出正确的答案或解题过程繁琐时,可以从反面入手,因为选择题的正确答案已在选项中列出,从而逐一考虑所有选项,排除其中不正确的,则剩下的就是正确的答案.5.(全国高考)若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析 首先比较a ,b , 即比较3ln 2,2ln 3的大小, ∵3ln 2=ln 8<ln 9=2ln 3, ∴a <b .故排除B 、D. 同理可得c <a . 答案 C (三)媒介法对于直接比较困难时,常插入媒介,以此为桥梁进行比较,常插入0或1.6.(山东高考)下列大小关系正确的是( ) A .0.43>30.4<log 40.3 B .0.43<log 40.3<30.4 C .log 40.3<0.43<30.4 D .log 40.3<30.4<0.43 解析 分析知0<0.43<1,30.4>30=1, log 40.3<log 41=0,故log 40.3<0.43<30.4.故选C. 答案 C (四)特值法对于有些有关对数不等式的选择题,通过取一些符合条件的特殊值验证,往往也能简便求解.7.(青岛模拟)已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2解析 取x =18,y =14,a =12,代入log a (xy )检验即可得D.答案 D。
第2课时 对数函数及其性质的应用课程标准(1)进一步理解对数函数的性质.(2)能运用对数函数的性质解决相关问题.新知初探·课前预习——突出基础性教材要点要点 对数型复合函数的单调性❶复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为________;若f(x)与g(x)的单调性相反,则其复合函数f[g(x)]为_ _______.对于对数型复合函数y=log a f(x)来说,函数y=log a f(x)可看成是y=log a u与u=f(x)两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.助学批注批注❶ 三看:(1)看底数是否大于1,(2)看函数的定义域,(3)看复合函数的构成.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)函数y=log a x(a>0,且a≠1)在(0,+∞)上是单调函数.( )(2)若函数y=a x(a>0,且a≠1)在R上是增函数,则函数y=log a x在(0,+∞)上也是增函数.( )(3)ln x<1的解集为(-∞,e).( )(4)y=log2[(x-1)(x-2)]的增区间是(-∞,1)∪(2,+∞).( )2.已知a=log20.6,b=log20.8,c=log21.2,则( ) A.c>b>a B.c>a>bC.b>c>a D.a>b>c3.函数f(x)=log12(2-x)的单调递增区间是( ) A.(-∞,2) B.(-∞,0)C.(2,+∞) D.(0,+∞)4.不等式log4x≤12的解集为________.题型探究·课堂解透——强化创新性题型 1 比较对数值的大小例1 (多选)下列各组的大小关系正确的是( )A.log230.5.log230.6B.log1.51.6>log1.51.4C.log0.57<log0.67D.log3π>log20.8方法归纳比较对数值大小的三种常用方法巩固训练1 若4x=5y=20,z=log x y,则x,y,z的大小关系为( ) A.x<y<z B.z<x<yC.y<x<z D.z<y<x题型 2 解对数不等式例2 已知log0.3(3x)<log0.3(x+1),则x的取值范围为( )A .(12,+∞)B .(-∞,12)C .(-12,12) D .(0,12)方法归纳对数不等式的2种类型及解法巩固训练2 已知log a 12>1,则a 的取值范围为________.题型 3 对数型复合函数的单调性例3 若函数f (x )=ln (ax -2)在(1,+∞)单调递增,则实数a 的取值范围为( )A .(0,+∞)B .(2,+∞)C .(0,2]D .[2,+∞)方法归纳已知对数型函数的单调性求参数的取值范围一要结合复合函数的单调性规律,二要注意函数的定义域.巩固训练3 函数f (x )=ln (x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)题型 4 对数型函数性质的综合应用例4 已知函数f (x )=log a 4−x 4+x (a >0,且a ≠1).(1)判断函数f (x )的奇偶性;(2)判断函数f (x )的单调性.方法归纳解决对数型函数性质的策略巩固训练4 已知奇函数f (x )=ln ax +1x −1.(1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并利用函数单调性的定义证明.第2课时 对数函数及其性质的应用新知初探·课前预习[教材要点]要点增函数 减函数[基础自测]1.答案:(1)√ (2)√ (3)× (4)×2.解析:∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.答案:A3.解析:函数的定义域为(-∞,2)因为函数y=2-x在(-∞,2)上为减函数.又0<12<1,所以函数f(x)=log12(2-x)的单调增区间是(-∞,2).答案:A4.解析:由题设,可得:log4x≤log4412,则0<x≤412=2,∴不等式解集为(0,2].答案:(0,2]题型探究·课堂解透例1 解析:A中,因为函数y=log23x是减函数,且0.5<0.6,所以log230.5>log230.6,A错;B中,因为函数y=log1.5x是增函数,且1.6>1.4,所以log1.51.6>log1.51.4,B正确;C中,因为0>log70.6>log70.5,所以1log70.6<1log70.5,即log0.67<log0.57,C不正确;D中,因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8,D正确.答案:BD巩固训练1 解析:∵4x=5y=20,根据指数与对数的关系和y=log a x(a>1)为增函数:x=log420>log416=2,y=log520,由log55<log520<log525,即1<log520<2,故1<y<2.∴1<y<x.可得log x y<log x x=1,即z<1综上:z<y<x.答案:D例2 解析:因为函数y=log0.3x是(0,+∞)上的减函数,所以原不等式等价于{3x>0,x+1>0,3x>x+1,解得x>12.答案:A巩固训练2 解析:由log a 12>1得log a12>log a a.①当a>1时,有a<12,此时无解.②当0<a<1时,有12<a,从而12<a<1.∴a的取值范围是(12,1).答案:(12,1)例3 解析:函数f(x)=ln (ax-2)中,令u=ax-2,函数y=ln u在(0,+∞)上单调递增,而函数f(x)=ln (ax-2)在(1,+∞)上单调递增,则函数u=ax-2在(1,+∞)上单调递增,且∀x>1,ax-2>0,因此,{a>0a−2≥0,解得a≥2,所以实数a的取值范围为[2,+∞).答案:D巩固训练3 解析:要使函数有意义,则:x2-2x-8>0,解得:x<-2或x>4,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则,可得函数的单调增区间为(4,+∞).答案:D例4 解析:(1)由4−x4+x>0,∴f(x)的定义域为(-4,4),关于原点对称,又f(-x)=log a 4+x4−x=log a(4−x4+x)-1=-log a4−x4+x=-f(x),∴f(x)是奇函数;(2)∵t=4−x4+x=-1+84+x在(-4,4)上单调递减,又当0<a<1时,y=log a t在(0,+∞)上单调递减,当a>1时,y=log a t在(0,+∞)上单调递增,∴当0<a<1时,f(x)=log a 4−x4+x在(-4,4)上单调递增,当a>1时,f(x)=log a 4−x4+x在(-4,4)上单调递减.巩固训练4 解析:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即ln −ax+1−x−1=-lnax+1x−1.∴ax−1x+1=x−1ax+1,即(a2-1)x2=0,得a=±1,经检验a=-1时不符合题意,∴a=1.(2)f(x)在(1,+∞)上单调递减.证明:由(1)得f(x)=ln x+1x−1,x∈(-∞,-1)∪(1,+∞),任取x1,x2∈(1,+∞),且x1<x2,f(x1)-f(x2)=ln x1+1x1−1-ln x2+1x2−1=ln (x1+1x1−1·x2−1x2+1)=ln x1x2+x2−x1−1x1x2+x1−x2−1.∵1<x1<x2,∴x2-x1>0,x1x2+x2−x1−1x1x2+x1−x2−1>1,∴f(x1)-f(x2)>0,f(x1)>f(x2),∴f(x)在(1,+∞)上单调递减.。
2.2 换底公式[情境导入]计算器上,只有常用对数键“log ”和自然对数键“ln ”,要计算log a b 必须将它转换成常用对数或自然对数.[问题] 你知道如何转换吗?[新知初探]知识点 换底公式一般地,若a >0,b >0,c >0,且a ≠1,c ≠1,则log a b = .这个结论称为对数的换底公式.[点一点] 换底公式的推论[想一想]1.对数的换底公式用常用对数、自然对数表示是什么形式?2.你能用换底公式和对数的运算性质推导出结论log N n M m =mnlog N M 吗?[做一做]1.log 6432的值为( ) A .12B .2C .56D .652.若log 23=a ,则log 49=( ) A .a B .a C .2aD .a 23.若log 34·log 48·log 8m =log 416,则m =________.——研教材·典例精析——题型一 对数换底公式的应用 [例1] 计算:(1)log 29·log 34; (2)log 52×log 79log 5 13×log 734.[通性通法]利用换底公式求值的思想与注意点[跟踪训练]1.计算(log 32+log 23)2-log 32log 23-log 23log 32的值为( )A .log 26B .log 36C .2D .12.若log 2x ·log 34·log 59=8,则x =( ) A .8 B .25 C .16D .4题型二 用已知对数式表示求值问题[例2] 已知log 189=a ,18b =5,求log 3645.(用a ,b 表示)[母题探究]1.(变设问)若本例条件不变,如何求log 1845(用a ,b 表示)?2.(变条件)若将本例条件“log 189=a ,18b =5”改为“log 94=a ,9b =5”,则又如何求解呢?[通性通法]求解与对数有关的各种求值问题应注意如下三点 (1)利用对数的定义可以将对数式转化为指数式; (2)两边同时取对数是将指数式化成对数式的常用方法;(3)对数的换底公式在解题中起着重要的作用,能够将不同底的问题转化为同底问题,从而使我们能够利用对数的运算性质解题.[跟踪训练]设a =log 36,b =log 520,则log 215=( ) A.a +b -3(a -1)(b -1) B.a +b -2(a -1)(b -1) C.a +2b -3(a -1)(b -1)D.2a +b -3(a -1)(b -1)题型三 有附加条件的对数式求值问题[例3] (1)已知a ,b ,c 是不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,则abc 的值为________;(2)已知5x =2y =(10)z ,且x ,y ,z ≠0,则z x +zy的值为________.[通性通法]与对数有关的带有附加条件的代数式求值问题,需要对已知条件和所求式子进行化简转化,原则是化为同底的对数,以便利用对数的运算性质.要整体把握对数式的结构特征,灵活运用指数式与对数式的互化.[跟踪训练]已知实数a ,b ,c ,d 满足5a =4,4b =3,3c =2,2d =5,则(abcd )2 022=________.[随堂检测]1.式子log 32·log 227的值为( ) A .2 B .3 C .13D .-32.在1log b a ,lg alg b ,log b a ,log a n b n (a ,b 均为不等于1的正数)中,与log a b 一定相等的有( ) A .4个 B .3个 C .2个D .1个3.计算:1+lg 2·lg 5-lg 2·lg 50-log 35·log 259·lg 5=( ) A .1 B .0 C .2D .44.若实数a ,b ,c 满足25a =404b =2 020c =2 019,则下列式子正确的是( ) A .1a +2b =2cB .2a +2b =1cC .1a +1b =2cD .2a +1b =2c5.方程log 2x +1log (x +1)2=1的解是________.参考答案——读教材·知识梳理——[新知初探]知识点 换底公式 log c blog c a[想一想]1.提示:log a b =lg b lg a ,log a b =ln bln a.2.提示:log N nM m=lg M m lg N n =m lg M n lg N =m n ·lg M lg N =mn log NM .[做一做]1.【答案】C【解析】log 6432=lg 32lg 64=lg 25lg 26=5lg 26lg 2=56.2.【答案】B【解析】log 49=lg 9lg 4=2lg 32lg 2=log 23=a .故选B.3.【答案】9【解析】利用换底公式,得lg 4lg 3·lg 8lg 4·lg mlg 8=2, ∴lg m =2lg 3=lg 9,于是m =9.——研教材·典例精析——题型一 对数换底公式的应用 [例1] 解:(1)由换底公式可得, log 29·log 34=lg 9lg 2·lg 4lg 3=2lg 3lg 2·2lg 2lg 3=4.(2)原式=log 52log 513×log 79log 734=log 132×log 349=lg 2lg 13×lg 9lg 413=12lg 2-lg 3×2lg 323lg 2=-32. [跟踪训练]1.【答案】C【解析】原式=(log 32)2+2log 32×log 23+(log 23)2-(log 32)2-(log 23)2=2log 32×log 23 =2×lg 2lg 3×lg 3lg 2=2.2.【答案】B【解析】∵log 2x ·log 34×log 59=lg x lg 2·lg 4lg 3·lg 9lg 5=lg x lg 2×2lg 2lg 3×2lg 3lg 5=8,∴lg x =2lg 5=lg 25,∴x =25. 题型二 用已知对数式表示求值问题 [例2] 解:因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182 =a +b 1+log 18189=a +b 2-log 189=a +b 2-a. [母题探究]1.解:因为18b =5,所以log 185=b ,所以log 1845=log 189+log 185=a +b . 2.解:因为9b =5,所以log 95=b . 所以log 3645=log 945log 936=log 9(5×9)log 9(4×9)=log 95+log 99log 94+log 99=b +1a +1. [跟踪训练]【答案】D【解析】∵a =log 36=log 26log 23=1+log 23log 23,∴log 23=1a -1.∵b =log 520=log 220log 25=2+log 25log 25,∴log 25=2b -1.∴log 215=log 23+log 25=1a -1+2b -1=2a +b -3(a -1)(b -1).题型三 有附加条件的对数式求值问题 [例3] 【答案】(1)1 (2)2【解析】(1)法一:设a x =b y =c z =t ,则x =log a t ,y =log b t ,z =log c t ,∴1x +1y +1z =1log a t +1log b t +1log c t =log t a +log t b +log t c =log t (abc )=0,∴abc =t 0=1. 法二:∵a ,b ,c 是不等于1的正数,且a x =b y =c z ,∴令a x =b y =c z =t >0,∴x =lg t lg a ,y =lg t lg b ,z =lg t lg c, ∴1x +1y +1z =lg a lg t +lg b lg t +lg c lg t =lg a +lg b +lg clg t . ∵1x +1y +1z=0,且lg t ≠0, ∴lg a +lg b +lg c =lg(abc )=0,∴abc =1.(2)令5x =2y =(10)z =k ,则x =log 5k ,y =log 2k ,12z =lg k ,z =2lg k ,∴z x +z y =2lg k log 5k +2lg k log 2k=2lg k (log k 5+log k 2)=2lg k ·log k 10=2·log 10k ·log k 10=2. [跟踪训练]【答案】1【解析】将5a =4,4b =3,3c =2,2d =5转化为对数式, 得a =log 54=ln 4ln 5,b =ln 3ln 4,c =ln 2ln 3,d =ln 5ln 2,所以(abcd )2 022=⎝⎛⎭⎫ln 4ln 5×ln 3ln 4×ln 2ln 3×ln 5ln 22 022=12 022=1.[随堂检测]1.【答案】B【解析】log 32·log 227=lg 2lg 3·lg 27lg 2=lg 27lg 3=log 327=3,故选B.2.【答案】C【解析】1log b a =log a b ,lg a lg b =log b a ,log b a =log b a ,log a n b n =log a b ,故选C.3.【答案】B【解析】原式=1+lg 2·lg 5-lg 2(1+lg 5)-lg 5 lg 3·2lg 32lg 5·lg 5=1+lg 2·lg 5-lg 2-lg 2·lg 5-lg 5=1-(lg 2+lg 5)=1-lg 10=1-1=0. 4.【答案】A【解析】由已知,得52a =404b =2 020c =2 019,得2a =log 52 019,b =log 4042 019, c =log 2 0202 019,所以12a =log 2 0195,1b =log 2 019404,1c =log 2 0192 020,而5×404=2 020,所以12a +1b =1c ,即1a +2b =2c ,故选A.5.【答案】1【解析】原方程可变为log 2x +log 2(x +1)=1,即log 2[x (x +1)]=1, ∴x (x +1)=2,解得x =1或x =-2.又⎩⎪⎨⎪⎧x >0,x +1>0,x +1≠1.即x >0,∴x =1.。
4.3.2 对数的运算[目标] 1.理解对数的运算性质;2.能用换底公式将一般对数转化成自然对数或常用对数;3.了解对数在简化运算中的作用.[重点] 对数的运算性质的推导与应用.[难点] 对数的运算性质的推导和换底公式的应用.知识点一 对数的运算性质[填一填]如果a >0,且a ≠1,M >0,N >0.那么: (1)log a (M ·N )=log a M +log a N . (2)log a MN =log a M -log a N .(3)log a M n =n log a M (n ∈R ).[答一答]1.若M ,N 同号,则式子log a (M ·N )=log a M +log a N 成立吗? 提示:不一定,当M >0,N >0时成立,当M <0,N <0时不成立. 2.你能推导log a (MN )=log a M +log a N 与log a MN =log a M -log a N(M ,N >0,a >0且a ≠1)两个公式吗?提示:①设M =a m ,N =a n ,则MN =a m +n .由对数的定义可得log a M =m ,log a N =n ,log a (MN )=m +n .这样,我们可得log a (MN )=log a M +log a N . ②同样地,设M =a m ,N =a n ,则M N =a m -n .由对数定义可得log a M =m , log a N =n ,log a MN =m -n ,即log a MN =log a M -log a N .知识点二 换底公式[填一填]前提原对数的底数a 的取值范围a >0,且a ≠1条件 原对数的真数b 的取值范围 b >0 换底后对数的底数c 的取值范围c >0,且c ≠1公式log a b =log c blog c a换底公式常见的推论: (1)log an b n =log a b ;(2)log am b n =n m log a b ,特别log a b =1log b a ;(3)log a b ·log b a =1; (4)log a b ·log b c ·log c d =log a d .[答一答]3.换底公式的作用是什么?提示:利用换底公式可以把不同底数的对数化为同底数的对数. 4.若log 34·log 48·log 8m =log 416,求m 的值. 提示:∵log 34·log 48·log 8m =log 416,∴lg4lg3·lg8lg4·lg mlg8=log 442=2,化简得lg m =2lg3=lg9, ∴m =9.类型一 对数运算性质的应用 [例1] 计算下列各式: (1)12lg 3249-43lg 8+lg 245; (2)2lg2+lg31+12lg0.36+13lg8;(3)lg25+23lg8+lg5·lg20+(lg2)2.[分析] (1)(2)正用或逆用对数的运算性质化简;(3)用lg2+lg5=1化简.[解] (1)(方法1)原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12. (方法2)原式=lg427-lg4+lg(75)=lg 42×757×4=lg(2×5)=lg 10=12. (2)原式=lg4+lg31+lg0.6+lg2=lg12lg (10×0.6×2)=lg12lg12=1.(3)原式=2lg5+2lg2+(1-lg2)(1+lg2)+(lg2)2=2(lg5+lg2)+1-(lg2)2+(lg2)2=2+1=3.利用对数的运算性质解决问题的一般思路:(1)把复杂的真数化简;(2)正用公式:对式中真数的积、商、幂、方根,运用对数的运算法则,将它们化为对数的和、差、积、商,然后再化简;(3)逆用公式:对式中对数的和、差、积、商,运用对数的运算法则,将它们化为真数的积、商、幂、方根,然后化简求值.[变式训练1] (1)计算:log 53625=43;log 2(32×42)=9.(2)计算:lg8+lg125=3;lg 14-lg25=-2;2log 36-log 34=2.类型二 换底公式的应用[例2] (1)计算:(log 32+log 92)·(log 43+log 83); (2)已知log 189=a,18b =5,试用a ,b 表示log 3645.[解] (1)原式=⎝⎛⎭⎫lg2lg3+lg2lg9⎝⎛⎭⎫lg3lg4+lg3lg8=⎝⎛⎭⎫lg2lg3+lg22lg3⎝⎛⎭⎫lg32lg2+lg33lg2=3lg22lg3·5lg36lg2=54. (2)由18b =5,得log 185=b ,∴log 3645=log 18(5×9)log 18(18×2)=log 185+log 1891+log 182=log 185+log 1891+log 18189=log 185+log 1892-log 189=a +b 2-a.利用换底公式可以统一“底”,以方便运算.在用换底公式时,应根据题目特点灵活换底.由换底公式可推出常用结论:log a b ·log b a =1.[变式训练2] 计算下列各式:(1)(log 2125+log 425+log 85)·(log 52+log 254+log 1258). (2)log 89log 23×log 6432. 解:(1)方法1:原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28 ⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22·⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法2:原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125=⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5=⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.(2)方法1:原式=log 29log 28÷log 23×log 232log 264=2log 233÷log 23×56=59.方法2:原式=lg9lg8÷lg3lg2×lg32lg64=2lg33lg2×lg2lg3×5lg26lg2=59.类型三 与对数方程有关的问题[例3] (1)若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,求xy 的值;(2)解方程:log 2x +log 2(x +2)=3. [解] (1)由题可知lg[(x -y )(x +2y )]=lg(2xy ), 所以(x -y )(x +2y )=2xy ,即x 2-xy -2y 2=0. 所以⎝⎛⎭⎫x y 2-x y -2=0. 解得x y =2或xy=-1.又因为x >0,y >0,x -y >0.所以x y =2.(2)由方程可得log 2x +log 2(x +2)=log 28. 所以log 2[x (x +2)]=log 28, 即x (x +2)=8.解得x 1=2,x 2=-4. 因为x >0,x +2>0,所以x =2.对数方程问题的求解策略:,利用对数运算性质或换底公式将方程两边写成同底的对数形式,由真数相等求解方程,转化过程中注意真数大于零这一条件,防止增根.[变式训练3] (1)方程lg x +lg(x -1)=1-lg5的根是( B ) A .-1 B .2 C .1或2D .-1或2(2)已知lg x +lg y =2lg(x -2y ),则log2xy的值为4. 解析:(1)由真数大于0,易得x >1,原式可化为lg[x (x -1)]=lg2⇒x (x -1)=2⇒x 2-x -2=0⇒x 1=2,x 2=-1(舍).(2)因为lg x +lg y =2lg(x -2y ), 所以lg xy =lg(x -2y )2,所以xy =(x -2y )2,即x 2-5xy +4y 2=0. 所以(x -y )(x -4y )=0,解得x =y 或x =4y .因为x >0,y >0,x -2y >0,所以x =y 应舍去, 所以xy=4.故log2xy=log 24=4.类型四 对数的实际应用[例4] 人们对声音有不同的感觉,这与它的强度有关系.声音强度I 的单位用瓦/平方米(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12W/m 2,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平.[解] 由题意,可知树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,故LI 1=10·lg1=0,则树叶沙沙声的强度水平为0分贝;耳语的强度是I 2=1×10-10W/m 2,则I 2I 0=102,故LI 2=10lg102=20,即耳语声的强度水平为20分贝. 同理,恬静的无线电广播强度水平为40分贝.对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.[变式训练4] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.301 0)解:设至少抽n 次可使容器内空气少于原来的0.1%,则a (1-60%)n <0.1%a (设原先容器中的空气体积为a ),即0.4n <0.001,两边取常用对数得n ·lg0.4<lg0.001,所以n >lg0.001lg0.4=-32lg2-1≈7.5.故至少需要抽8次.1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( B ) A .log a b ·log c b =log c a B .log a b ·log c a =log c bC .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c解析:由换底公式得log a b ·log c a =lg b lg a ·lg a lg c =log c b ,所以B 正确.2.2log 32-log 3329+log 38的值为( B )A.12 B .2 C .3D.13解析:原式=log 34-log 3329+log 38=log 34×8329=log 39=2.3.lg 5+lg 20的值是1.解析:lg 5+lg 20=lg(5×20)=lg 100=1.4.若a >0,且a ≠1,b >0,且b ≠1,则由换底公式可知log a b =lg b lg a ,log b a =lg a lg b ,所以log a b =1log b a ,试利用此结论计算1log 321+1log 721=1.解析:1log 321+1log 721=lg3lg21+lg7lg21=lg (3×7)lg21=1.5.计算:(1)3log 72-log 79+2log 7⎝⎛⎭⎫322;(2)(lg2)2+lg2·lg50+lg25.解:(1)原式=log 78-log 79+log 798=log 78-log 79+log 79-log 78=0.(2)原式=lg2(lg2+lg50)+2lg5=lg2·lg100+2lg5 =2lg2+2lg5=2(lg2+lg5)=2lg10=2.——本课须掌握的两大问题1.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M ±N ).2.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.。
教学设计对数及其运算导入新课思路1.上节课我们学习了以下内容: 1.对数的定义.2.指数式与对数式的互化. a b =N ⇔log a N =b . 3.重要公式:(1)负数与零没有对数;(2)log a 1=0,log a a =1;(3)对数恒等式a log a N =N . 下面我们接着讲对数的运算性质〔教师板书课题〕思路2.我们在学习指数的时候,知道指数有相应的运算法则,即指数运算法则. a m ·a n =am +n;a m ÷a n =am -n;(a m )n =a mn ;ma n =nma .从上节课我们还知道指数与对数都是一种运算,而且它们互为逆运算,对数是否也有和指数相类似的运算法则呢?答案是肯定的,这就是本堂课的主要内容,点出课题.推进新课新知探究提出问题(1)在上节课中,我们知道,对数运算可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?(2)如我们知道a m =M ,a n =N ,a m ·a n =a m +n ,那m +n 如何表示,能用对数式运算吗? (3)在上述(2)的条件下,类比指数运算性质能得出其他对数运算性质吗?(4)你能否用最简练的语言描述上述结论?如果能,请描述.(5)上述运算性质中的字母的取值有什么限制吗? (6)上述结论能否推广呢?(7)学习这些性质能对我们进行对数运算带来哪些方便呢? 讨论结果:(1)通过问题 (2)来说明.(2)如a m ·a n =a m +n ,设M =a m ,N =a n ,于是MN =a m +n ,由对数的定义得到 M =a m ⇔m =log a M ,N =a n ⇔n =log a N , MN =a m+n⇔m +n =log a MN ,log a MN =log a M +log a N . 因此m +n 可以用对数式表示.(3)令M =a m ,N =a n ,则M N =a m ÷a n =a m -n ,所以m -n =log a M N.又由M =a m ,N =a n ,所以m =log a M ,n =log a N .所以log a M -log a N =m -n =log a MN ,即log a MN=log a M -log a N .设M =a m ,则M n =(a m )n =a mn .由对数的定义, 所以log a M =m ,log a M n =mn .所以log a M n =mn =n log a M ,即log a M n =n log a M . 这样我们得到对数的三个运算性质: 如果a >0,a ≠1,M >0,N >0,则有 log a (MN )=log a M +log a N ,① log a MN =log a M -log a N ,②log a M n =n log a M (n ∈R ).③ (4)以上三个性质可以归纳为:性质①:两数积的对数,等于各数的对数的和;性质②:两数商的对数,等于被除数的对数减去除数的对数; 性质③:幂的对数等于幂指数乘底数的对数.(5)利用对数运算性质进行运算,所以要求a >0,a ≠1,M >0,N >0. (6)性质①可以推广到n 个数的情形:即log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n (其中a >0,a ≠1,M 1M 2M 3…M n 均大于0).(7)纵观这三个性质我们知道,性质①的等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算. 性质②的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.性质③从左往右仍然是降级运算.利用对数的性质①②可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,大大的方便了对数式的化简和求值.应用示例思路1例1 用log a x ,log a y ,log a z 表示下列各式: (1)log a(x 2yz );(2)loga x 2yz ;(3)log a xy 2z. 活动:学生思考观察,教师巡视,检查学生解题情况,发现问题及时纠正. 利用对数的运算性质,把整体分解成部分.对(1)可先利用性质1,转化为两数对数的和,再利用性质3,把幂的对数转化为两数对数的积.对(2)(3)可先利用性质2,转化为两数对数的差,再利用性质1,把积的对数转化为两数对数的和,最后利用性质3,转化为幂指数与底数的对数的积.解:(1)log a (x 2yz )=log a x 2+log a y +log a z =2log a x +log a y +log a z . (2)log a x 2yz =log a x 2-log a (yz )=2log a x -log a y -log a z .(3)log ax y 2z =log a x -log a (y 2z )=12log ax -2log a y -log a z . 点评:对数的运算实质上是把积、商、幂的对数运算分别转化为对数的加、减的运算. 变式训练1.若a >0,a ≠1,x >0,y >0,x >y ,下列式子正确的个数为( ). ①log a x ·log a y =log a (x +y ) ②log a x -log a y =log a (x -y ) ③log a xy =log a x ÷log a y ④log a (xy )=log a x ·log a yA .0B .1C .2D .3 答案:A2.若a >0,a ≠1,x >y >0,n ∈N +,下列式子正确的个数为( ). ①(log a x )n =n log a x ②(log a x )n =log a x n ③log a x =-log a 1x④log a x log a y =log a x y ⑤n log a x =1n log a x ⑥1nlog a x =log a nx ⑦log a x n =n log a x ⑧log a x -y x +y =-log a x +y x -yA . 3B .4C .5D .6答案:B 例2 计算:(1)log 3(92×35);(2)15lg100.活动:学生审题,回顾对数的运算性质和运算顺序,严格按性质和法则解题,注意运算结果的准确性.解:(1)log 3(92×35)=log 392+log 335=log 334+5log 33=4+5=9; (2)lg 15100=15lg 102=15×2=25.例3 计算:(1)lg 14-2lg 73+lg 7-lg 18; (2)lg 243lg 9; (3)lg 27+lg 8-3lg 10lg 1.2.解:(1)解法一:lg 14-2lg 73+lg 7-lg 18=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.解法二:lg 14-2lg 73+lg 7-lg 18=lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)lg 243lg 9=lg 35lg 32=5lg 32lg 3=52.(3)lg 27+lg 8-3lg 10lg 1.2=lg (33)12+lg 23-3lg (10)12lg 3×2210=32(lg 3+2lg 2-1)lg 3+2lg 2-1=32.点评:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系;(2)题要避免错用对数运算性质.特别是对数运算性质的灵活运用,运算性质的逆用常被学生所忽视.例4 科学家以里氏震级来度量地震的强度.若设I 为地震时所散发出来的相对能量程度,则里氏震级r 可定义为r =0.6lg I ,试比较6.9级和7.8级地震的相对能量程度.解:设6.9级和7.8级地震的相对能量程度分别为I 1和I 2,由题意,得⎩⎪⎨⎪⎧6.9=0.6lg I 1,7.8=0.6lg I 2. 因此0.6(lg I 2-lg I 1)=0.9, 即lg I 2I 1=1.5.所以I 2I 1=101.5≈32.因此,7.8级地震的相对能量程度约为6.9级地震的相对能量程度的32倍.思路2例1 求下列各式的值.(1)log 525;(2)log 0.41;(3)log 2(47×25);(4)lg 5100.解法一:(1)log 525=log 552=2; (2)log 0.41=0;(3)log 2(47×25)=log 247+log 225=log 222×7+log 225=2×7+5=19; (4)lg 5100=15lg 102=25lg 10=25.解法二:(1)设log 525=x ,则5x =25=52,所以x =2; (2)设log 0.41=x ,则0.4x =1=0.40,所以x =0; (3)log 2(47×25)=log 2(214×25)=log 2219=19,或log 2(47×25)=log 247+log 225=7log 222+log 225=2×7+5=19; (4)设lg 5100=x ,则10x =15100=2510,所以x =25.点评:此题关键是要记住对数运算性质的形式.例2 计算:(1)2log 510+log 50.25;(2)2log 525+3log 264;(3)log 2(log 216).解:(1)因为2log 510=log 5102=log 5100,所以2log 510+log 50.25=log 5100+log 50.25=log 5(100×0.25)=log 552=2log 55=2;(2)因为2log 525=2log 552=4log 55=4,3log 264=3log 226=18log 22=18, 所以2log 525+3log 264=22;(3)因为log 216=log 224=4,所以log 2(log 216)=log 24=log 222=2. 点评:要注意灵活运用对数的运算性质,特别是公式的逆用. 例3 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245;(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2; (3)lg 2+lg 3-lg 10lg 1.8.活动:学生思考、交流,观察题目特点,教师可以提示引导:将真数中的积、商、幂化为对数的和、差、积;再就是逆用对数的运算性质.先利用对数的性质把积、商、幂化为对数的和、差、积进行计算.再就是逆用对数的运算性质,把对数的和、差、积转化为真数的积、商、幂再计算.(1)解法一:12lg 3249-43lg 8+lg 245=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5 =12(lg 2+lg 5)=12lg 10=12. 解法二:12lg 3249-43lg 8+lg 245=lg 427-3423lg 2 +lg 7 5=lg42×757×4=lg(2×5)=lg 10=12.(2)解法一:lg 52+23lg 8+lg 5·lg 20+(lg 2)2=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 2+lg 5)2=2+(lg 10)2=2+1=3.解法二:lg 52+23lg 8+lg 5·lg 20+(lg 2)2=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(1-lg 5)2=2lg 10+lg 5[2(1-lg 5)+lg 5]+(1-lg 5)2=2+lg 5(2-lg 5)+(1-lg 5)2 =2+2lg 5-(lg 5)2+1-2lg 5+(lg 5)2=3.(3)解法一:lg 2+lg 3-lg 10lg 1.8=12(lg 2+lg 9-lg 10)lg 1.8=lg18102lg 1.8=lg 1.82lg 1.8=12. 解法二:lg 2+lg 3-lg 10lg 1.8=12lg 2+lg 3-12lg 1810=12lg 2+lg 3-122lg 3+lg 2-1=12(2lg 3+lg 2-1)2lg 3+lg 2-1=12.点评:这类问题一般有以下几种处理方法:一是将真数中的积、商、幂运用对数的运算法则化为对数的和、差、积,然后化简求值;二是将式中对数的和、差、积运用对数的运算法则化为真数的积、商、幂,然后化简求值;三是上述两种方法灵活运用,化简求值.例4 已知a ,b ,c 均为正数,3a =4b =6c ,求证:2a +1b =2c.活动:学生思考观察,教师引导,及时评价学生的思考过程.从求证的结论看,解题的关键是设法把a ,b ,c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c =k (k >0),则a ,b ,c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证法一:设3a =4b =6c =k ,则k >0.由对数的定义得a =log 3k ,b =log 4k ,c =log 6k , 则左边=2a +1b =2log 3k +1log 4k =2log k 3+log k 4=log k 9+log k 4=log k 36,右边=2c =2log 6k =2log k 6=log k 36,所以2a +1b =2c.证法二:对3a =4b =6c 同时两边取常用对数得lg 3a =lg 4b =lg 6c ,a lg 3=b lg 4=c lg 6. 所以c a =lg 3lg 6=log 63,c b =lg 4lg 6=log 64.又2c a +c b =log 6(9×4)=2,所以2a +1b =2c.点评:本题主要考查指数、对数的定义及其运算性质.灵活运用指数、对数的概念及性质解题,适时转化.知能训练1.用log a x ,log a y ,log a z ,log a (x +y ),log a (x -y )表示下列各式:(1)log a 3x y 2z ;(2)log a ⎝⎛⎭⎪⎫x ·4z 3y 2;(3)log a (2132xy z -);(4)log a xy x 2-y 2;(5)log a ⎝⎛⎭⎪⎫x +y x -y ·y ;(6)log a ⎣⎡⎦⎤y x (x -y )3.解:(1)log a 3x y 2z =log a 3x -log a y 2z =13log a x -(2log a y +log a z )=13log a x -2log a y -log a z ; (2)log a ⎝⎛⎭⎪⎫x ·4z 3y 2=log a x +log a4z 3y 2=log a x +14(log a z 3-log a y 2) =log a x -24log a y +34log a z =log a x -12log a y +34log a z ;(3)log a (2132xy z -)=log a x +log a y 12+23log a z-=log a x +12log a y -23log a z ;(4)log axyx 2-y2=log a xy -log a (x 2-y 2)=log a x +log a y -log a (x +y )(x -y ) =log a x +log a y -log a (x +y )-log a (x -y ); (5)log a ⎝⎛⎭⎪⎫x +y x -y ·y =log a x +y x -y +log a y =log a (x +y )-log a (x -y )+log a y ; (6)log a [yx (x -y )]3=3[log a y -log a x -log a (x -y )]=3log a y -3log a x -3log a (x -y ).2.已知f (x 6)=log 2x ,则f (8)等于( ). A.43B .8C .18D.12分析:因为f (x 6)=log 2x ,x >0,令x 6=8,得x =362=122,所以f (8)=122log 2=12.解析:因为f (x 6)=log 2x =16log 2x 6,所以f (x )=16log 2x .所以f (8)=16log 28=16log 223=12.答案:D拓展提升已知x ,y ,z >0,且lg x +lg y +lg z =0,求11lg lg y zx+·11lg lg z xy+·11lg lg x yz +的值.活动:学生讨论、交流、思考,教师可以引导.大胆设想,运用对数的运算性质.由于所求的式子是三项积的形式,每一项都有指数,指数中又有对数,因此想到用对数的运算性质,如果能对所求式子取对数,那可能会好解决些,故想到用参数法,设所求式子的值为t .解:令11lg lg y zx+·11lg lg z xy+·11lg lg x yz +=t ,则lg t =⎝⎛⎭⎫1lg y +1lg z lg x +⎝⎛⎭⎫1lg z +1lg x lg y +⎝⎛⎭⎫1lg x +1lg y lg z =lg x lg y +lg x lg z +lg y lg z +lg y lg x +lg z lg x +lg z lg y =lg x +lg z lg y +lg x +lg y lg z +lg y +lg z lg x=-lg ylg y+-lg zlg z+-lg xlg x=-3,所以t=10-3=11 000即为所求.课堂小结1.对数的运算法则.2.对数的运算法则的综合应用,特别是公式的逆向使用.3.对数与指数形式比较:习题3—4A组6,7,8.设计感想在前面研究了对数概念的基础上,为了运算的方便,本节课我们借助指数的运算法则,推出了对数的运算法则,引导学生自己完成推导过程,加深对公式的理解和记忆,对运算性质的认识类比指数的运算法则来理解记忆,强化法则的使用条件,注意对数式中每一个字母的取值范围,由于它是以后学习对数函数的基础,所以安排教学时,要反复练习,加大练习的量,多结合信息化的教学手段,顺利完成本堂课的任务.(设计者:卢岩冰)。
§2.2.1对数与对数的运算一.知识点归纳1.一般地,如果)1.0(≠>=a a N a x,那么数x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做对数的 ,N 叫做 。
2.当0>a 且1≠a 时,⇔=N a x。
3.通常我们将以10为底的对数叫做 ,并把N 10log 记为 ,将以e 为底的对数叫做 ,并把N e log 记为 。
4.=1log a ,=a a log ,=Na a log ,其中0>a 且1≠a 。
5.对数的基本运算如果0>a 且1≠a ,0,0>>N M ,(1)=⋅)(log N M a , (2)=NMa log , (3)ba M log = , 6.换底公式:aba b b c c a lg lg log log log ==,其中0,0>>c a 且1≠a ,1≠c⋅b a log =1,ma b n log =二.基础练习1.把下列指数形式写成对数形式,对数式写成指数式:(1) a3=27 (2)62-=641(3)5log 125=3 (4) 3log 811=-42..已知238log =a ,则a 等于 ( )A . 41B . 21C .2D . 43.25log 2log 20log 555+-等于( ) A .1 B .2 C .3 D .4 4.若lg2=a ,lg3=b ,则3log 2=( )A .b a +B .a b -C .b aD .ab三.例题选讲例题1.若y x y x a a >>>≠>,0,0,1,0,下列式子中正确的个数有( ) ①)(log log log y x y x a a a +=⋅ ②y x xy a a a log log )(log += ③y x yxa a alog log log ÷= ④x x a a log 2log 2= A .0 B .1 C .2 D .3例题2.求下列对数值 (1)8.1log 7log 37log 235log 5555-+- (2)245lg 8lg 344932lg 21+-例题3.已知518,9log 18==ba ,求45log 36。
四.巩固练习1.对于1.0≠>a a ,下列说法中,正确的是 ( )①若N M =,则N M a a log log = ②若N M a a log log =,则N M =③若22log log N Ma a =,则N M = ④若N M =,则22log log N M a a =A .①③B .②④C .②D .①②③④2.5lg 38lg +的值是( )A .3-B .1-C .1D .33.设255lg =x,则x 的值等于( )A .10B .10±C .100D .100±4.已知函数⎩⎨⎧>≤=0,log 0,3)(2x x x x f x ,那么)]41([f f 的值为( )A .9-B .91-C .91D .95.若n m a a ==3log ,2log ,则=+nm a 26.21log log 9log 7log 44923=⋅⋅a ,则=a7.计算下列各式的值(1))]81(log [log log 346 (2)2lg 20lg 5lg 8lg 325lg 22+⋅++五.真题演练1.(2009湖南卷文)2log )A. BC .12-D . 12§2.2.2对数函数及其性质一.知识点归纳1.一般地,我们把函数x y a log =,)1,0(≠>a a 叫做,其中x 是自变量,函数的定义域是 2.对数函数x ylog =,)1,0(≠>a a 的图象和性质用下表表示为: 3.)0(log 2>=x x y 是 的反函数;xy )21(=的反函数是对数函数x y a log =,)1,0(≠>a a 和指数函数 )1,0(≠>a a 互为反函数,它们的图象关于 对称。
二.基础练习1.若对数函数的图象过点)2,9(,则对数函数的解析式是( )A .x y 2log =B .x y 3log =C .x y 9log =D .9log 3=y 2.函数)1lg(-=x y 的定义域是( )A .),0[+∞B .),1[+∞C .),0(+∞D .),1(+∞3.如果03log 3log >>b a ,那么b a ,之间的关系是( )A .10<<<b aB .b a <<1C .10<<<a bD .a b <<14.三个数23.0=a ,3.0log 2=b ,3.02=c 之间的大小关系是( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<三.例题选讲例题1.求函数)5(log 21-=x y 的定义域。
例题2. 设函数)1,0(,log ≠>=a a x y a ,在区间]2,[a a 上的最大值与最小值的差是21,求a 的 值。
四.巩固练习1.若对1>x ,0log >x a ,则( )A .10>aB .1>aC .10<<aD .21<<a 2. 若对数函数x y a log =的图象过点)2,41(,则当161=x 时,对数函数的函数值是( ) A .1 B .2C .3D .43.已知函数xx f -=11)(的定义域是M ,)1ln()(+=x x g 的定义域是N ,则=⋂N M ( )A .}1|{>x xB .}1|{<x xC .}11|{<<-x xD .φ4.下列判断不正确的是( )A .3.4log 4.3log 22<B .3log 3log 3.02.0>C .6log 7log 76>D .4log log 2.03<π 5.当1>a 时,函数x y a log = 和x a y )1(-= 的图象只可能是( )6.函数1)12(log 3--=x y 恒过定点7.函数xy 2=的反函数是 ,函数x y ln =的反函数是 8.函数)1],4,2[(,log >∈=a x x y a ,若此函数的最大值比最小值大1,则a = 9.用列表,描点法作出函数1log 21+=x y 的图象10.已知函数)1lg()1lg()(x x x f +--=(1)求函数的定义域;(2)判断函数的奇偶性;(3)试比较)21(f 与)21(-f 的大小。
五.真题演练1.(2009全国卷Ⅱ文)设2lg ,(lg ),a e b e c ===A .a b c >>B .a c b >>C .c a b >>D .c b a >>参考答案§2.2.1对数与对数的运算一.知识点归纳1.底数,真数;2.N x a log =;3.常用对数,N lg ,自然对数,N ln ;4.0,1,N ;5.(1)N M a a log log +,(2) N M a a log log -,(3)M b a log ;6.b nma log 二.基础练习1.(1)a =27log 3,(2)6641log 2-=,(3)12553=,(4)81134=- 2.D 3.B 4.D三.例题选讲1.B2.(1)原式=]59)37[(log )735(log 255⨯-⨯=2,(2)原式=)42454932lg(⋅=21 3. 518=b,∴b =5log 18∴aba ++=++=÷⨯==29log 29log 5log )918(log )95(log 36log 45log 45log 18181821818181836 四.提高练习1. C2.D3.C4.C5.126.227. 解:(1)原式=)]3(log [log log 4346=01log )4(log log 646==(2)原式=2lg 5100lg5lg 4lg 5lg 22+⋅++=2lg )5lg 2(5lg 22+-⋅+ =)5lg 2(lg 25lg 222-++=3)5225lg(2=⨯+五.真题演练1.D§2.2.1对数函数及其性质一.知识点归纳1.),0(+∞;3.x y 2=,x y 21log =,xa y =,直线x y =二.基础练习1.B2.D3.D4.C三.例题选讲1.解:要使函数的表达式有意义,须满足⎪⎩⎪⎨⎧≥->-0)5(log 0521x x ,即⎩⎨⎧≤->155x x因此函数)5(log 21-=x y 的定义域是}65|{≤<x x2.解:(1)当1>a 时,函数x y a log =是定义域上的增函数,依题意得21log 2log =-a a a a ,解得 4=a ;(2)当10<<a 时,函数x y a log =是定义域上的减函数,依题意得212log log =-a a a a ,解得 41=a ; 因此,a 的值是414或。
四.提高练习1.B2.D3.C4.D5.B6. )1,1(-7.x y 2log =,xe y = 8. 210.解:(1)要使函数表达式有意义,须满足⎩⎨⎧>+>-0101x x ,解得11<<-x因此函数的定义域是}11|{<<-x x (2) 函数的定义域关于原点对称,有 )()1lg()1lg()(x f x x x f -=--+=-∴函数)(x f 是奇函数。
(3) 031lg 23lg 21lg )21(<=-=f ,0)21()21(>-=-f f∴)21()21(-<f f。