人教B版选修2-2高中数学1.4.2《微积分基本定理》word教案
- 格式:doc
- 大小:116.00 KB
- 文档页数:2
教学设计1.6微积分基本定理整体设计教材分析本节的主要内容是微积分基本定理的含义及运用微积分基本定理计算简单的定积分.教科书采用从局部到整体、从具体到一般的思想,从导数和定积分这两个微积分学中最基本和最重要的概念入手,以寻求二者之间的联系为突破口,先利用物理意义和导数的几何意义,并结合定积分的概念,通过对变速直线运动物体的位移问题进行详细探究,分别用物体的运动规律s=s(t)和速度函数v=v(t)表示出物体在时间段[a,b]上的位移s,进而推出一般形式的结论,得出微积分基本定理.微积分基本定理不仅揭示了导数和定积分之间的内在联系,而且还提供了计算定积分的一种有效方法.通过本节的学习,使学生经历定理的发现过程,直观了解微积分基本定理的含义.通过计算简单的定积分,使学生体会微积分基本定理的威力,从而引发学生进一步学习微积分知识的兴趣.课时分配《微积分基本定理》的教学分两个课时完成:第1课时内容为微积分基本定理;第2课时内容为定积分的几何意义.第1课时教学目标知识与技能目标通过实例了解导数和定积分的联系,直观了解微积分基本定理的含义,会用牛顿—莱布尼兹公式求简单的定积分.过程与方法目标通过实例体会用微积分基本定理求定积分的方法,感受在其过程中渗透的思想方法.情感、态度与价值观通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生的辩证唯物主义观点,提高理性思维能力和逆向思维能力,激发学生学习数学的兴趣,逐步培养学生分析问题、解决问题的能力及思维能力.重点难点重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用微积分基本定理计算简单的定积分.难点:了解微积分基本定理的含义.教学方法问题驱动、启发式、自主探究式教学法,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备多媒体课件.教学过程引入新课提出问题1:前面我们讲过用定积分的定义计算定积分,请回顾用定义计算∫10x3dx的过程,并尝试仿照此过程利用定积分的定义计算∫101x dx.活动设计:学生先独立思考,尝试求解,然后相互交流.学情预测:学生几乎不可能直接用定义计算出∫101x dx的值.活动成果:从前面的学习中可以发现,虽然被积函数f(x)=x3非常简单,但如果直接用定积分的定义计算∫10x3dx的值,其计算过程比较复杂,技巧性要求很高.而对于∫101x dx,几乎不可能直接用定义计算.那么,有没有更加简便、有效的方法求定积分呢?我们必须寻求计算定积分新的、更简洁的方法,也是比较一般的方法.设计意图使学生体会用定义求定积分的缺点和局限性,激发学生的探求欲望,为微积分基本定理的引入作好铺垫.探究新知我们已经学习了微积分学中两个最基本和最重要的概念——导数和定积分,这两个概念之间有没有内在联系呢?我们能否利用这种联系来求定积分呢?提出问题2:如图,一个作变速直线运动的物体的运动规律是s=s(t),它在任意时刻t 的速度v(t)与位移s(t)有何关系?活动设计:学生思考,进行口答.学情预测:绝大多数学生能得出正确结论.活动结果:得出变速直线运动中速度v(t)与位移s(t)的关系:v(t)=s′(t).设计意图回顾导数的相关知识及物理背景,复习路程与速度之间的关系,为进一步探究v(t)和s 做好铺垫.提出问题3:设这个物体在时间段[a,b]上的位移为s,你能用s(t),v(t)表示s吗?活动设计:学生独立思考,根据图象进行回答.学情预测:根据物理学的相关知识,结合图象,学生容易得出正确结论.活动结果:显然,物体位移s是函数s=s(t)在t=b处与t=a处的函数值之差,从而得出变速直线运动中位移s与位移函数s(t)的关系:s=s(b)-s(a).①设计意图得出基本定理公式中右端的雏形——s(b)-s(a),为进一步探究微积分基本定理做好铺垫.提出问题4:设这个物体在时间段[a,b]上的位移为s,你能用v(t)表示s吗?活动设计:学生先思考,允许分组讨论交流,必要时教师引导.学情预测:根据1.5.2节相关知识,不难得出结果.活动结果:师生共同梳理,得出变速直线运动中s与位移函数v(t)的关系:物体作变速直线运动,速度函数为v=v(t),求它在a≤t≤b内所做的位移s,步骤如下:(1)用分点a=t0<t1<t2<…<t n=b将区间[a,b]等分成n个小区间:[t0,t1],[t1,t2],…,[t i-1,t i],…,[t n-1,t n],其中每个小区间的长度均为Δt=t i-t i-1=b-an.物体在此时间段内经过的路程为Δs i.(2)当Δt 很小时,在区间[t i -1,t i ]上,v(t)的变化很小,可以认为物体近似地以速度v(t i -1)作匀速直线运动,物体所做的位移Δs i ≈h i =v(t i -1)Δt =s ′(t i -1)Δt =b -a ns ′(t i -1). 从几何意义上看(如图),设曲线s =s(t)上与t i -1对应的点为P ,PD 是点P 处的切线,由导数的几何意义可知,切线PD 的斜率等于s ′(t i -1),于是Δs i ≈h i =tan ∠DPC·Δt =s ′(t i -1)·Δt.(3)物体的总位移:s =1n i i S=∆∑≈∑i =1n h i =∑i =1n v(t i -1)Δt =∑i =1n s ′(t i -1)Δt. 显然,n 越大,即Δt 越小,区间[a ,b]的划分就越细,∑i =1n v(t i -1)Δt =∑i =1n s ′(t i -1)Δt 与s的近似程度就越高.(4)由定积分的定义有s =lim n →∞∑i =1n b -a n v(t i -1)=lim n →∞∑i =1n b -a n s ′(t i -1)=∫b a v(t)dt =∫b a s ′(t)dt.② 设计意图得出基本定理中公式左端的雏形——∫b a v(t)dt ,使公式雏形基本形成.提出问题5:通过上面的探究,我们将物体在时间段[a ,b]上的位移s ,分别用s(t)和v(t)进行了表示,现在你能否将二者联系起来?活动设计:教师引导学生,观察①②两式,得出关系式.学情预测:学生容易得出二者的关系式.活动结果:物体在区间[a ,b]上的位移s 就是v(t)=s ′(t)在区间上的定积分,等于函数s(t)在区间端点b ,a 处的函数值之差s(b)-s(a),从而s =∫b a v(t)dt =∫b a s ′(t)dt =s(b)-s(a).设计意图回到最初提出的问题,使学生潜移默化地形成目标意识,得出微积分定理的一个特例,为得出微积分基本定理奠定基础.提出问题6:对于一般的函数f(x),设F′(x)=f(x),是否也有:∫b a f(x)dx=∫b a F′(x)dx=F(b)-F(a)?若上式成立,我们就找到了用f(x)的原函数(即满足F′(x)=f(x))的数值差F(b)-F(a)来计算f(x)在[a,b]上的定积分的方法.活动设计:由学生做出猜想,教师可视具体情况决定是否给出学生证明过程.学情预测:学生容易得出正确的猜想结论.活动结果:对于一般函数f(x)是区间[a,b]上的连续函数,设F′(x)=f(x),则有∫b a f(x)dx =F(b)-F(a).证明如下:(此处并不要求学生掌握证明的过程)∵Φ(x)=∫x a f(t)d与F(x)都是f(x)的原函数,故F(x)-Φ(x)=c(a≤x≤b),其中c为某一常数.令x=a,得F(a)-Φ(a)=c,又Φ(a)=∫a a f(t)dt=0,∴c=F(a),故F(x)=Φ(x)+F(a).∴Φ(x)=F(x)-F(a)=∫x a f(t)dt.令x=b,有∫b a f(x)dx=F(b)-F(a).为了方便起见,还常用F(x)|b a表示F(b)-F(a),即∫b a f(x)dx=F(x)|b a=F(b)-F(a).设计意图教师引导学生由特殊到一般做出猜想,得出牛顿—莱布尼兹公式,体现定积分的基本思想,突出导数的几何意义,体现了数形结合这一数学中的基本思想方法.这里不要求学生掌握公式的证明过程,重在让学生体会推理的思想.回到最初提出的问题,使学生潜移默化地在学习及解决问题的过程中形成目标意识.归纳总结定理一般地,如果函数f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)dx =F(b)-F(a).该式称之为微积分基本公式或牛顿—莱布尼兹公式.它指出了求连续函数定积分的一般方法,把求定积分的问题转化成求原函数的问题,是微分学与积分学之间联系的桥梁.公式不仅揭示了导数和定积分之间的内在联系,同时也提供了计算定积分的一种有效方法,为后面的学习奠定了基础.因此,牛顿—莱布尼兹公式处于极其重要的地位,起到了承上启下的作用,而且它给微积分学的发展带来了深远的影响,是微积分学中最重要、最辉煌的成果.理解新知提出问题7:计算定积分∫b a f(x)dx的关键是什么?如何求F(x)?活动设计:组织学生交流、讨论回答.活动结果:由微积分基本定理知,计算定积分∫b a f(x)dx 关键是找出满足F ′(x)=f(x)的函数F(x),从而把问题转化为计算函数F(x)在区间的两个端点处的函数值之差.通常,我们可以运用基本初等函数求导公式和导数的四则运算法则从反方向上求出F(x).设计意图明确运用微积分基本定理的关键,进一步加深对定理的理解和记忆.运用新知例1计算∫10x 3dx.活动设计:以学生练习、讨论为主,教师引导、点评.活动结果:让学生与上一节例题比较,得出结论:结果相同,但比用定义计算定积分简单.教师给出规范的书写格式.解:因为(14x 4)′=x 3,所以∫10x 3dx =14x 4|10=14. 设计意图初步展示利用微积分基本定理求定积分的优越性,规范运用微积分基本定理求定积分的书写格式.例2计算(1)∫10x 2dx ;(2)∫211xdx. 解:(1)因为(13x 3)′=x 2,所以∫10x 2dx =13x 3|10=13. (2)因为(lnx)′=1x ,所以∫211xdx =lnx|21=ln2-ln1=ln2. 点评:进一步熟练、规范运用微积分基本定理求定积分的书写格式.巩固练习计算:1.∫211x 2dx ;2.∫31(2x -1x 2)dx. 解:1.∫211x 2dx =(-x -1)|21=-12+1=12. 2.因为(x 2)′=2x ,(1x )′=-1x 2, 所以∫31(2x -1x 2)dx =∫312xdx -∫311x 2dx =x 2|31+1x |31=(9-1)+(13-1)=223. 变练演编1.已知∫t 0(2x -4)dx =5,则t =__________.2.已知∫21f(x)dx =(lnx 2)|21,则f(x)=__________.3.请你仿照第3题,自己编一个类似的题目,并与你的同学交换,试求其结果.答案:1.5 2.2x3.答案略. 点评:1.训练逆向思维,进一步熟悉公式;2.进一步体会公式运用的关键——求原函数F(x);3.进一步体会导数与定积分的关系,强化本节的基本思想,同时训练复合函数的求导问题;4.训练学生仿例编题,增加问题的多样性、趣味性、探索性和挑战性,使学生潜移默化地学会编题、解题.达标检测1.∫1-1xdx 等于( )A .-1B .1C .0D .22.y =∫10(3x 2-x +1)dx ,则y ′等于( )A .0B .1C .3D .63.∫21(x -1x)dx =__________. 4.∫21(x 2-2x -3x)dx =__________. 答案:1.C 2.A 3.32-ln2 4.-12-3ln2 课堂小结知识整理,形成系统(由学生归纳,教师完善).1.知识收获:本节课借助于变速直线运动物体的速度与路程的关系以及图形,得出了特殊情况下的牛顿—莱布尼兹公式,进而推广到一般的函数,得出了微积分基本定理,找到了一种求定积分的简便方法.2.方法收获:运用微积分基本定理的关键是找到被积函数的原函数,在探求定理的过程中,充分体会了“由特殊到一般”的研究问题的方法.3.思维收获:数形结合的思想,由特殊到一般推理的思想.布置作业习题1.6 A 组1.(1)(3).补充练习基础练习1.∫π0sinxdx 等于( )A .0B .2C .πD .2π2.若∫a 1(2x +1x)dx =3+ln2,且a>1,则a 的值为( ) A .6 B .4C .3D .23.∫10e x dx 等于( )A .e -1 B .1 C .e D .e -14.∫0-1(x -e x )dx 等于( )A .-1-1eB .-1C .-32+1eD .-32答案:1.B 2.D 3.D 4.C拓展练习5.设函数y =∫x 0(t -1)dt(x>0),则y 有( )A .极小值12B .极小值-12C .极大值12D .极大值-126.已知∫5t (2x -4)dx =5,则t =__________.答案:5.B 6.0或4点评:第6题是变练演编第1题的变式与提升,第6题重在使学生认识不同的积分区间可能得到相同的积分值,提升对微积分基本定理的认识,为几何意义的引出做好铺垫.第5题是与导数知识相结合求极值的问题,意在提高学生的综合解题能力.设计说明本节从变速直线运动这一实际问题出发,让学生观察探究、合作交流讨论.通过数形结合,使学生经历从特殊到一般的推理过程研究.通过探究变速直线运动物体在某段时间内的速度与位移的关系,寻求导数和积分的内在联系,得到微积分基本定理.在“数形结合”的思想下,在问题式教学的引导下,学生既经历了微积分基本定理的发现过程,又直观了解了微积分基本定理的含义.在教材处理上,大胆创新,结合学生的认知能力和思维习惯进行引导,突出微积分基本定理的探究过程,整个过程以学生探究为主,使其体会探索的乐趣和微积分基本定理的威力.例题和练习的设计遵循由浅入深、循序渐进的原则,低起点、多角度、多层次地加深对微积分基本定理的认识,强化运用定理解题的步骤和格式,使学生在运用中体会微积分基本定理的具体用法以及运用定理的关键.备课资料备选例题例1函数y=∫x-x(t2+2)dt(x>0)()A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确思路分析:本题容易得出y=23x3+4x,但应注意x>0,故答案应选C,而非A.答案:C例2设f(x)是连续函数,且f(x)=x+2∫10f(t)dt,求f(x).解:由题意,可知f(x)=x+c(c是一个常数).所以f(x)=x+2∫10f(t)dt=x+2∫10(t+c)dt=x+1+2c,即x+c=x+1+2c,从而c=-1.所以f(x)=x-1.(设计者:韩辉杰)第2课时教学目标知识与技能目标通过实例进一步熟练微积分基本定理解题的步骤格式,了解其几何意义,掌握定积分的性质.过程与方法目标通过实例体会用微积分基本定理求定积分的方法,感受在其过程中渗透的数形结合等思想方法.情感、态度与价值观通过微积分基本定理的简单应用,培养学生运用知识解决实际问题的能力,提高分析问题、解决问题的能力,激发学生学习数学的兴趣.重点难点重点:运用微积分基本定理解决简单的数学及实际问题,了解其几何意义.难点:微积分基本定理的含义,定积分的值与曲边梯形面积之间的关系,定积分的性质.教学方法问题探究式教学法,使学生在解决问题中练习知识、掌握知识;同时,能够掌握方法、提升能力.教学过程复习回顾1.微积分基本定理的内容是什么?如果函数f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),则∫b a f(x)dx=F(x)|b a=F(b)-F(a).2.计算定积分的关键是什么?计算定积分∫b a f(x)dx关键是找出满足F′(x)=f(x)的函数F(x),从而把问题转化为计算函数F(x)在区间的两个端点处的函数值之差.3.一般如何得出F(x)?通常我们可以运用基本初等函数的求导公式和导数的四则运算法则逆向求出F(x).4.计算下列定积分:∫3-1(4x-x2)dx.答案:20 3.引入新课提出问题1:计算下列定积分:∫π0sinxdx,∫2ππsinxdx,∫2π0sinxdx.活动设计:可由多名学生同时到黑板上板演,其他学生独立思考求解.学情预测:学生可以比较顺利地计算出来.活动成果:用牛顿—莱布尼兹公式计算定积分比较简洁、有效,结果如下:解:因为(-cosx)′=sinx,所以∫π0sinxdx=(-cosx)|π0=(-cosπ)-(-cos0)=2;∫2π0πsinxdx=(-cosx)|2ππ=(-cos2π)-(-cosπ)=-2;∫2π0sinxdx=(-cosx)|2π0=(-cos2π)-(-cos0)=0.设计意图体会求导数对求定积分的重要意义,同时熟练运用公式.探究新知提出问题2:由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.活动设计:学生先独立思考,然后小组讨论,并对成果进行展示.学情预测:学生的说法可能有多种,经过讨论、细化、规范说法,但可能仍有重复或疏漏.活动结果:教师引导学生进行分析比较,可以发现:定积分的值可能取正值,也可能取负值,还可能是0.(1)当对应的曲边梯形位于x轴上方时(图1),定积分的值取正值,且等于曲边梯形的面积;图1(2)当对应的曲边梯形位于x轴下方时(图2),定积分的值取负值,且等于曲边梯形的面积的相反数;图2(3)当位于x轴上方的曲边梯形的面积等于位于x轴下方的曲边梯形的面积时,定积分的值为0(图3),且等于位于x轴上方的曲边梯形的面积减去位于x轴下方的曲边梯形的面积.图3设计意图着重说明定积分的值与曲边梯形面积之间的关系.提出问题3:你能否给出一般的定积分∫b a f(x)dx 的几何意义?活动设计:学生类比问题2进行思考,然后口答.学情预测:学生一般能得出正确结论,但叙述上可能不太严谨.活动结果:如图,定积分∫b a f(x)dx 的几何意义是:界于x 轴、曲线y =f(x)及直线x =a 、x =b 之间各部分曲边梯形面积的“代数和”——在x 轴上方的面积取正号,在x 轴下方的面积取负号.因此,定积分的值也可以分成几部分来求,然后把各部分的值加起来,就是所求定积分的值.(定积分的性质)通过探究思考,使学生掌握定积分的几何意义,进一步加深对定积分的认识.设计意图 ⎠⎜⎛0π2 提出问题4:不计算定积分的值,试比较⎠⎜⎛0π2 cosxdx 与22cos xdx ππ-⎰的大小关系. 活动设计:学生先思考,然后分组讨论交流,教师引导.学情预测:有了上面的讨论和分析,学生不难得出结果. 活动结果:师生共同梳理,根据余弦函数的对称性,从图象上容易看出22cos xdx ππ-⎰所对应的曲边梯形的面积,刚好是⎠⎜⎛0π2cosxdx 所对应的曲边梯形的面积的2倍. 设计意图体会定积分几何意义的重要性.提出问题5:计算定积分⎠⎜⎛0π2cosxdx 与22cos xdx ππ-⎰的值,并与0sin xdx π⎰进行比较,试从几何意义上给出解释.活动设计:可由学生到黑板上板演,其他学生独立思考求解.学情预测:学生可以比较顺利地计算出来.活动成果:解:因为(sinx)′=cosx ,所以⎠⎜⎛0π2cosxdx =sinx|π20=sin π2-sin0=1, 22cos xdx ππ-⎰=sinx|π2-π2=sin π2-sin(-π2)=2.根据正弦函数与余弦函数图象的关系,容易得出22cos xdx ππ-⎰所对应的曲边梯形的面积,刚好等于∫π0sinxdx 所对应的曲边梯形的面积.设计意图 通过计算及比较,进一步熟悉公式、加深对几何意义的理解,同时强化数形结合的思想方法.设计意图运用新知例1由抛物线y 2=x 和直线x =1所围成的图形的面积等于( )A .1 B.43 C.23 D.13活动设计:以学生练习、讨论为主,教师引导、点评.活动结果:根据几何意义,所求面积也就是定积分∫10xdx 的2倍(如图阴影部分所示).因为(23x 32)′=x ,所以∫10xdx =(23x 32)|10=23. 所求面积为2×23=43,故选答案B. 设计意图进一步体会几何意义的重要性,同时渗透数形结合的思想.例2汽车以每小时32公里的速度行驶,到某处需要减速停车.设汽车作匀减速刹车,加速度大小a =1.8米/秒2,问从开始刹车到停车,汽车行驶了多少米?解:首先要求出从刹车开始到停车经过了多少时间,当t =0时,汽车速度v 0=32千米/小时=32×1 0003 600米/秒≈8.88米/秒,刹车后汽车匀减速行驶,其速度为v(t)=v 0-at =8.88-1.8t.当汽车停住时,速度v(t)=0,故由v(t)=8.88-1.8t =0,解得t =8.881.8≈4.93(秒). 于是在这段时间内,汽车所驶的距离是s =∫4.930v(t)dt =∫4.930(8.88-1.8t)dt = (8.88t -1.8×12t 2)|4.930≈21.90(米). 即在刹车后,汽车需驶过21.90米才能停住.点评:进一步熟练、规范运用微积分基本定理求定积分问题,并体会定积分在解决实际问题中的价值.巩固练习计算下列定积分:(1) ⎠⎜⎛0π2 (3x +sinx)dx ;(2) 412cos 2xdx ππ⎰;(3)∫21(x -1)dx. 答案:(1)3π28+1;(2)14;(3)423-53. 变练演编1.∫20(2x -4)(x 2-4)dx =__________. 2.∫32(x +1x)2dx =__________. 3.∫41x(1-x)dx =__________.答案:1.403 2.92+ln3-ln2 3.-176点评:进一步熟练运用公式;进一步体会公式运用的关键——求原函数F(x);体会导数与定积分的关系;体会利用定积分的性质计算定积分.达标检测1.∫21(e x -2x)dx =__________. 答案:e 2-e -2ln22.计算定积分∫3π0sinxdx 的值,并从几何意义上解释这个值表示什么.解:∫3π0sinxdx =(-cosx)|3π0=2.它表示位于x 轴上方的两个曲边梯形的面积与位于x 轴下方的曲边梯形的面积之差.或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与位于x 轴下方的曲边梯形的面积(取负值)的代数和.课堂小结知识整理,形成系统(由学生归纳,教师完善).1.知识收获:本节课通过探究正弦函数在某个区间上的定积分,结合图象,得出了定积分的几何意义,同时学习了定积分的性质.2.方法收获:运用微积分基本定理及其几何意义、定积分的性质可以方便地解决定积分问题.3.思维收获:数形结合的思想,由特殊到一般的思想.布置作业习题1.6B 组1.(1)(2)(3).补充练习基础练习1.∫10(e x +e -x )dx 等于( ) A .e +1eB .2e C.2e D .e -1e2.曲线y =cosx ,x ∈[0,3π2]与坐标轴围成的图形的面积为( ) A .4 B .3C.52D .2 3.若∫a 0(3x 2+4x -5)dx =a 3-2(a>1),则a =__________.答案:1.D 2.B 3.2拓展练习4.22cos 2x dx ππ⎰=__________. 答案:π4-125.如图,求由两条曲线y =-x 2,4y =-x 2及直线y =-1所围成的图形的面积.解:由⎩⎪⎨⎪⎧y =-x 2,y =-1,得C(1,-1),同理得D(2,-1). ∴所求图形的面积 S =2{∫10[-x 24-(-x 2)]dx +∫21[-x 24-(-1)]dx} =2(∫103x 24dx -∫21x 24dx +∫21dx)=2(x 34|10-x 312|21+x|21)=43. 设计说明本节从探究正弦函数在某个区间上的定积分与对应曲边梯形面积的关系入手,让学生观察探究、合作交流讨论,使学生经历从特殊到一般的探究过程.通过数形结合,寻求定积分和曲边梯形面积的内在联系,得到定积分的几何意义.在“数形结合”的思想下,在问题式教学的引导下,学生既经历了知识发现的过程,又直观了解了定积分的性质.本节教材课本内容相对较少,但其地位却非常重要,因此,本设计增加了相应的探究内容和例题及练习.在充分探究的基础上,强化针对性练习,使学生能较好地理解定积分的几何意义,并掌握其性质.例题和练习的设计遵循由浅入深、循序渐进的原则,与前一节的题目相辅相成,并且相对于前一节题目的难度有所提升,以便于学生更好地掌握公式、熟悉性质.备课资料牛顿与莱布尼兹创立微积分之解析牛顿,1642年生于英格兰,1661年,入英国剑桥大学,1665年,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分)、万有引力和光的分析.牛顿生活的时代正是英国发生变革的时代,当时英国发生了国内战争,资产阶级和贵族的阶级妥协,使英国资产阶级革命明显地带上了不彻底性.牛顿在30岁以前发现了微积分,并建立了经典力学体系,而他的后半生在自然科学的研究上几乎一事无成.这是由于在资本主义产生和形成的时期,资产阶级曾经向宗教神学发起冲击,帮助科学从神学中解放出来.但是当资产阶级的地位巩固以后,阶级斗争逐渐激化之时,资产阶级逐渐衰退,他们就抓住各种各样的宗教信念作为奴役人民的思想武器.牛顿受其影响很大,其前半生由于自发的唯物主义的思想倾向,使他获得了巨大的成就,而后半生则完全沉迷于神学的研究.牛顿继承了培根的经验主义传统,特别重视实验和归纳推理的作用,他曾断言,自然科学只能从经验事实出发解释世界.这在当时对打击经院哲学的崇尚空谈、妄称神意来歪曲自然界是起过积极作用的.莱布尼兹生于德国,1672年赴巴黎,在那里接触到惠更斯等一些数学名流,引导其进入了数学领域,开始微积分的创造性工作.牛顿建立微积分是从运动学的观点出发,而莱布尼兹则从几何学的角度去考虑,所创设的微积分符号远远优于牛顿的符号,并有效地促进了微积分学的发展.牛顿发现微积分(1665~1666年)比莱布尼兹至少早了9年,然而莱布尼兹公开发表它的微积分文章比牛顿早3年.如果说,牛顿建立微积分主要是从运动学的观点出发,而莱布尼兹则是从哲学的和几何学的角度去考虑,特别是和巴罗的“微分三角形”有密切的关系,莱布尼兹称它为“特征三角形”.巴罗的“微分三角形”对莱布尼兹有着重要启发,对微分三角形的研究,使他意识到求切线和求积分问题是一对互逆的问题.莱布尼兹第一个发表出微分和积分之间的互逆关系.1675~1676年间,他从求曲边梯形面积出发得到积分的概念,给出微积分基本定理.1686年莱布尼兹发表积分学论文《潜在的几何与分析不可分和无限》,1693年,他给出了上述定理的一个证明,以上这些都发表在《教师学报》上.将微分和积分统一起来,是微积分理论得以建立的一个重要标志.牛顿和莱布尼兹的哲学观点的不同导致了他们创立微积分的方法不同.牛顿坚持唯物论的经验论,特别重视实验和归纳推理.他在研究经典力学规律和万有引力定律时,遇到了一些无法解决的数学问题,而这些数学问题用欧几里德几何学和16世纪的代数学是无法解决的,因此牛顿着手研究新的求曲率、面积、曲线的长度、重心、最大最小值等问题的方法——流数法.莱布尼兹的微积分创造始于研究“切线问题”和“求积问题”,他从微分三角形认识到:求曲线的切线依赖于纵坐标之差与横坐标之差的比值;求曲边图形的面积则依赖于在横坐标的无限小区间上的纵坐标之和或无限薄的矩形之和.莱布尼兹认识到求和与求差运算是可逆的.莱布尼兹的无穷小的分阶正是和它的客观唯心论的哲学体系中那个不同层次的单子系统是相对应的.莱布尼兹在微积分的研究过程中,连续性原则成为其工作的基石,而连续性原则是扎根于他哲学中无限的本质的思想.。
1.6 微积分基本定理1.问题导航(1)微积分基本定理的内容是什么? (2)定积分的取值符号有哪些? 2.例题导读 通过P 53例1,学会利用微积分基本定理求简单定积分的步骤和方法,通过P 53例2的学习,理解定积分的几何意义和定积分的取值符号.1.微积分基本定理(1)内容:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x=F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.(2)表示:为了方便,常常把F (b )-F (a )记成F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ). 2.定积分的符号由定积分的意义与微积分基本定理可知,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时(如图1),定积分的值取正值,且等于曲边梯形的面积.(2)当对应的曲边梯形位于x 轴下方时(如图2),定积分的值取负值,且等于曲边梯形的面积的相反数.(3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时(如图3),定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积..1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√2.若a =⎠⎛01(x -2)d x ,则被积函数的原函数为( )A .f (x )=x -2B .f (x )=x -2+C C .f (x )=12x 2-2x +CD .f (x )=x 2-2x答案:C3.⎠⎛0πsin x d x =________.解析:⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=(-cos π)-(-cos 0)=2.答案:21.应用微积分基本定理求定积分的注意事项(1)微积分基本定理沟通了定积分与导数的关系,揭示了被积函数与函数的导函数之间的互逆运算关系,为计算定积分提供了一个简单有效的方法——转化为计算函数F (x )在积分区间上的增量.(2)用微积分基本定理求定积分的关键是找到满足F ′(x )=f (x )的函数F (x )再计算F (b )-F (a ).(3)利用微积分基本定理求定积分,有时需先化简被积函数,再求定积分. 2.常见函数的定积分公式(1)⎠⎛ab C d x =Cx ⎪⎪⎪ba (C 为常数). (2)⎠⎛ab x n d x =1n +1x n +1⎪⎪⎪ba (n ≠-1).(3)⎠⎛a b sin x d x =-cos x ⎪⎪⎪ba .(4)⎠⎛ab cos x d x =sin x ⎪⎪⎪ba . (5)⎠⎛ab 1xd x =ln x ⎪⎪⎪ba (b >a >0). (6)⎠⎛a b e x d x =e x⎪⎪⎪ba. (7)⎠⎛ab a x d x =a x ln a ⎪⎪⎪ba(a >0且a ≠1).利用微积分基本定理求定积分求下列定积分的值. (1)⎠⎛12(x +1)(x -2)d x ;(2)⎠⎛14x (1+x )d x ;(3)∫π20sin 2x d x ;(4)⎠⎛24x 2-x +1x -1d x . [解] (1)⎠⎛12(x +1)(x -2)d x=⎠⎛12(x 2-x -2)d x=⎝⎛⎭⎫13x 3-12x 2-2x ⎪⎪⎪21 =⎝⎛⎭⎫13×23-12×22-2×2-⎝⎛⎭⎫13×13-12×12-2×1 =-76.(2)⎠⎛14x (1+x )d x=⎠⎛14(x +x )d x =⎝⎛⎭⎫23x 32+12x 2⎪⎪⎪41=⎝⎛⎭⎫23×432+12×42-⎝⎛⎭⎫23×132+12×12=736. (3)∫π2sin 2x d x =∫π21-cos 2x2d x =12∫π20(1-cos 2x )d x =12⎝⎛⎭⎫x -12sin 2x ⎪⎪⎪π2=π4. (4)⎠⎛24x 2-x +1x -1d x =⎠⎛24x (x -1)+1x -1d x =⎠⎛24⎝ ⎛⎭⎪⎫x +1x -1d x =⎝⎛⎭⎫12x 2+ln (x -1)⎪⎪⎪42 =⎝⎛⎭⎫12×42+ln 3-⎝⎛⎭⎫12×22+ln 1=6+ln 3.(1)当被积函数为两个函数的乘积(分式)时,一般要先化简被积函数将其转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下:第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ).(2)利用微积分基本定理求定积分的关键是找出被积函数的原函数,若被积函数的原函扫一扫 进入91导学网()微积分基本定理1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4解析:选B.⎠⎛01(kx +1)d x =⎝⎛⎭⎫12kx 2+x ⎪⎪⎪10=12k +1=2. ∴k =2.(2)⎠⎛12x -1x2d x =________. 解析:⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎫1x -1x 2d x =⎝⎛⎭⎫ln x +1x ⎪⎪⎪21=⎝⎛⎭⎫ln 2+12-()ln 1+1=ln 2-12. 答案:ln 2-12求分段函数的定积分求下列定积分的值. (1)⎠⎛-12|x -1|d x ;(2)⎠⎛-12e |x |d x ;(3)若f (x )=⎩⎪⎨⎪⎧x 2,x ≤0cos x -1,x >0求∫π2-1f (x )d x .[解] (1)⎠⎛-12|x -1|d x=⎠⎛-11|x -1|d x +⎠⎛12|x -1|d x=⎠⎛-11(-x +1)d x +⎠⎛12(x -1)d x=⎝⎛⎭⎫-12x 2+x ⎪⎪⎪1-1+⎝⎛⎭⎫12x 2-x ⎪⎪⎪21=2+12=52.(2)⎠⎛-12e |x |d x =⎠⎛-10e |x |d x +⎠⎛02e |x |d x=⎠⎛-10e -x d x +⎠⎛02e x d x=-e -x ⎪⎪⎪0-1+e x ⎪⎪⎪2=e -1+e 2-1=e 2+e -2.(3)∫π2-1f (x )d x =⎠⎛-1f (x )d x +∫π20f (x )d x =⎠⎛-1x 2d x +∫π20(cos x -1)d x=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪π2=13+⎝ ⎛⎭⎪⎫1-π2=43-π2.求分段函数的定积分(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.2.(1)设f (x )=⎩⎪⎨⎪⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23B.34C.45D.56 解析:选D.⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝⎛⎭⎫2x -12x 2⎪⎪⎪21 =13+12=56. (2)⎠⎛0π|cos x |d x =________.解析:⎠⎛0π|cos x |d x =∫π20|cos x |d x +∫ππ2|cos x |d x=∫π20cos x d x +∫ππ2(-cos x )d x=sin x ⎪⎪⎪π20-sin x ⎪⎪⎪⎪ππ2=1+1=2.答案:2(3)计算⎠⎛02|x 2-x |d x .解:∵|x 2-x |=⎩⎪⎨⎪⎧-x 2+x ,0≤x ≤1,x 2-x ,1<x ≤2,∴⎠⎛02|x 2-x |d x =⎠⎛01(-x 2+x )d x +⎠⎛12(x 2-x )d x=⎝⎛⎭⎫-13x 3+12x 2⎪⎪⎪10+⎝⎛⎭⎫13x 3-12x 2⎪⎪⎪21 =16+56=1.微积分基本定理的综合应用(1)已知x ∈(0,1],f (x )=⎠⎛01(1-2x +2t )d t ,则f (x )的值域是________.[解析] ⎠⎛01(1-2x +2t )d t =[(1-2x )t +t 2]⎪⎪⎪10 =2-2x ,即f (x )=-2x +2,因为x ∈(0,1],所以f (1)≤f (x )<f (0),即0≤f (x )<2,所以函数f (x )的值域是[0,2).[答案] [0,2)(2)已知⎠⎛01[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.[解] ⎠⎛01[(3ax +1)(x +b )]d x=⎠⎛01[3ax 2+(3ab +1)x +b ]d x=⎣⎡⎦⎤ax 3+12(3ab +1)x 2+bx ⎪⎪⎪10 =a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.法一:由于(a +b )2=a 2+b 2+2ab ≥4ab .所以⎝⎛⎭⎪⎫-3ab +122≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). 法二:设ab =t ,得a +b =-3t +12,故a ,b 为方程x 2+3t +12x +t =0的两个实数根,所以Δ=(3t +1)24-4t ≥0,整理得9t 2-10t +1≥0,即(t -1)(9t -1)≥0,解得t ≤19或t ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). [互动探究] 本例(1)中原已知条件改为f (t )=⎠⎛01(1-2x +2t )d x ,则f (t )=________.解析:f (t )=⎠⎛01(1-2x +2t )d x=[(1+2t )x -x 2]⎪⎪⎪1=2t . 答案:2t含有参数的定积分问题的处理办法与注意点 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.3.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0<1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =13ax 3+cx ⎪⎪⎪10 =a 3+c =ax 20+c ,又0≤x 0<1,∴x 0=33. 答案:33(2)已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,求f (a )的最大值.解:∵⎠⎛01(2ax 2-a 2x )d x=⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪1=23a -12a 2, ∴f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29.∴当a =23时,f (a )有最大值为29.数学思想 利用函数的奇偶性巧解定积分问题已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛0为偶函数,求a ,b .[解] ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛-11(x 3+ax )d x =0.∴⎠⎛-11(x 3+ax +3a -b )d x =⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3.① 又f (t )=⎣⎡⎦⎤x 44+a 2x 2+(3a -b )x ⎪⎪⎪t0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0.②由①②,得a =-3,b =-9. [感悟提高](1)在求对称区间上的定积分时,应该首先考虑函数性质与积分的性质,使解决问题的方法尽可能简便.(2)奇、偶函数在区间[-a ,a ]上的定积分:①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-aaf (x )d x=0. ②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aag (x )d x =2⎠⎛0a g (x )d x ,如本例为偶函数,可用该结论计算.1.下列各式中,正确的是( )A.⎠⎛ab F ′(x )d x =F ′(b )-F ′(a )B.⎠⎛a b F ′(x )d x =F ′(a )-F ′(b )C.⎠⎛ab F ′(x )d x =F (b )-F (a ) D.⎠⎛ab F ′(x )d x =F (a )-F (b )答案:C2.⎠⎛12(e x -1)d x =________.解析:⎠⎛12(e x-1)d x =(e x-x )⎪⎪⎪21=(e 2-2)-(e 1-1) =e 2-e -1.答案:e 2-e -13.求定积分∫π20cos 2xsin x +cos xd x 的值.解:∫π20cos 2xsin x +cos xd x=∫π20cos2x -sin 2x cos x +sin xd x=∫π20(cos x -sin x )d x=()sin x +cos x ⎪⎪⎪π2=⎝ ⎛⎭⎪⎫sin π2+cos π2-()sin 0+cos 0=0.[A.基础达标]1.⎠⎛1e 1xd x 的值为( ) A .1 B .2 C .ln 2D .e 2解析:选A.⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=ln e -ln 1=1.2.⎠⎛1e x d x 的值为( )A .eB .e -1 C.1eD .1解析:选B.⎠⎛01e x d x =e x ⎪⎪⎪10=e 1-e 0=e -1. 3.已知⎠⎛1m (2x -1)d x =2,则m 的值为( )A .5B .4C .3D .2解析:选D.∵⎠⎛1m (2x -1)d x =(x 2-x )⎪⎪⎪m1=m 2-m =2, ∴m 2-m -2=0,∴m =-1(舍去)或m =2.4.⎠⎛23x x -1d x =( ) A .5+ln 2 B .5-ln 2 C .1+ln 2 D .1-ln 2解析:选C.⎠⎛23xx -1d x =⎠⎛23x -1+1x -1d x=⎠⎛23⎝ ⎛⎭⎪⎫1+1x -1d x =[]x +ln (x -1)⎪⎪⎪32 =(3+ln 2)-(2+ln 1)=1+ln 2.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.∵⎠⎛01f (x )d x =⎠⎛01x 2d x +⎠⎛01⎣⎡⎦⎤2⎠⎛01f (x )d x d x=13x 3⎪⎪⎪10+⎣⎢⎡⎦⎥⎤2⎠⎛01f (x )d x x ⎪⎪⎪10=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.故选B.6.已知f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0)则⎠⎛-12f (x )d x =________.解析:∵f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0).∴⎠⎛-12f (x )d x =⎠⎛-10x d x +⎠⎛02e x d x=12x 2⎪⎪⎪0-1+e x ⎪⎪⎪2=-12+e 2-1=e 2-32.答案:e 2-327.设f (x )=kx +b ,若⎠⎛01f (x )d x =2,⎠⎛12f (x )d x =3.则f (x )的解析式为________.解析:由⎠⎛01(kx +b )d x =2,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪1=2, 即12k +b =2,① 由⎠⎛12(kx +b )d x =3,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪21=3, 即(2k +2b )-⎝⎛⎭⎫12k +b =3.∴32k +b =3,② 由①②联立得,k =1,b =32,∴f (x )=x +32.答案:f (x )=x +328.⎠⎛03x 2-4x +4d x =________.解析:⎠⎛03x 2-4x +4d x =⎠⎛03(x -2)2d x=⎠⎛03|x -2|d x=⎠⎛02|x -2|d x +⎠⎛23|x -2|d x=⎠⎛02(2-x )d x +⎠⎛23(x -2)d x=⎝⎛⎭⎫-12x 2+2x ⎪⎪⎪20+⎝⎛⎭⎫12x 2-2x ⎪⎪⎪32=2+12=52. 答案:529.计算⎠⎛02x1+x 2d x .解:∵f (x )=1+x 2的导函数为f ′(x )=x 1+x 2. ∴⎠⎛02x 1+x 2d x =1+x 2⎪⎪⎪20=5-1. 10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176.求⎠⎛12f (x )xd x 的值. 解:设f (x )=kx +b ,k ≠0,则⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b =5.① ⎠⎛01xf (x )d x =⎠⎛01(kx 2+bx )d x =⎝⎛⎭⎫kx 33+bx 22⎪⎪⎪10=k 3+b 2=176,② 联立①②可得⎩⎪⎨⎪⎧k =4.b =3. ∴f (x )=4x +3.则⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12⎝⎛⎭⎫4+3x d x =(4x +3ln x )⎪⎪⎪21 =(8+3ln 2)-(4+3ln 1)=4+3ln 2.[B.能力提升]1.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:选B.S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=73, S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2, S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>e>73, 所以S 2<S 1<S 3,故选B.2.若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数: ①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .3解析:选C.对于①,⎠⎛-11sin 12x ·cos 12x d x=⎠⎛-1112sin x d x =12⎠⎛-11sin x d x =12(-cos x )⎪⎪⎪1-1=12(-cos 1+cos 1)=0. 故①为区间[-1,1]上的一组正交函数;对于②,⎠⎛-11(x +1)(x -1)d x =⎠⎛-11(x 2-1)d x =⎝⎛⎭⎫13x 3-x ⎪⎪⎪1-1=13-1-⎝⎛⎭⎫-13+1 =23-2=-43≠0, 故②不是区间[-1,1]上的一组正交函数;对于③,⎠⎛-11x ·x 2d x =⎠⎛-11x 3d x =⎝⎛⎭⎫14x 4⎪⎪⎪1-1=0. 故③为区间[-1,1]上的一组正交函数,故选C.3.若⎠⎛0t cos θd θ=32,且t ∈(0,2π),则t 的值为________. 解析:∵⎠⎛0t cos θd θ=sin θ⎪⎪⎪t 0 =sin t =32, ∵t ∈(0,2π),∴t =π3或23π. 答案:π3或23π 4.已知f (x )=⎩⎪⎨⎪⎧x -1,x ≤11-ln x x 2,x >1,则⎠⎛0e f (x )d x =________. 解析:∵f (x )=⎩⎨⎧x -1,x ≤11-ln x x 2,x >1, ∴⎠⎛0e f (x )d x =⎠⎛01(x -1)d x +⎠⎛1e 1-ln x x 2d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪10+ln x x ⎪⎪⎪e 1=-12+1e =2-e 2e. 答案:2-e 2e5.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解:由f (-1)=2,得a -b +c =2,①又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10 =13a +c =-2,③ 联立①②③得a =6,c =-4.6.设f (x )是一次函数,且⎠⎛01f (x )d x =1,求证:⎠⎛01f 2(x )d x >1. 证明:设f (x )=kx +b (k ≠0,b ,k 为常数).⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b , 即k 2+b =1,k =2(1-b ). ⎠⎛01f 2(x )d x =⎠⎛01(kx +b )2d x =⎠⎛01(k 2x 2+2kbx +b 2)d x =⎝⎛⎭⎫13k 2x 3+kbx 2+b 2x ⎪⎪⎪10=13k 2+kb +b 2 =43(1-b )2+2b (1-b )+b 2=13(b -1)2+1>1. 即⎠⎛01f 2(x )d x >1得证.。
人教版高中选修(B版)2-21.4.2微积分基本定理课程设计一、课程背景微积分是数学的重要分支,对于学习自然科学和工程学科有着至关重要的作用。
在高中阶段,微积分是数学必修内容,也是高考数学的重点和难点。
而在选修课程中,微积分更是占据了很大的比重,且难度相对较高。
本文设计了人教版高中选修(B版)2-21.4.2微积分基本定理课程,旨在帮助学生更好地掌握微积分的基本定理,提高其数学素养和解题能力。
二、课程目标1.理解微积分的基本知识和基本定理。
2.掌握微积分基本定理的应用方法,解决实际问题。
3.通过本课程的学习,提高学生的数学素养和解题能力。
三、课程内容3.1 微积分基本概念回顾通过复习微积分的基本概念,对微积分有一个整体的认识和理解。
3.2 微积分基本定理理解微积分的基本定理,包括牛顿-莱布尼茨公式和积分中值定理,并通过例题进行讲解,让学生能够掌握其应用方法。
3.3 微积分基本公式介绍微积分中的一些基本公式,如幂函数、指数函数、对数函数的积分公式等,并通过例题进行讲解,让学生掌握其应用方法。
介绍微积分在实际问题中的应用,如曲线长度计算、定积分求解物体质心和重心、体积和表面积计算等,通过例题进行讲解,让学生掌握其应用方法。
四、课程重点微积分基本定理是本课程的重点,学生需要理解其含义,并掌握其应用方法。
同时,微积分的应用也是本课程的重点之一,学生需要掌握如何将微积分方法应用于实际问题的求解中。
五、课程难点微积分基本定理的应用是本课程的难点,学生需要运用基本定理解决实际问题并进行综合运用。
六、教学方法本课程采用讲解、例题演练和课堂讨论相结合的教学方法。
首先进行知识点的讲解和概述,然后通过例题演示和讲解,让学生能够将所学知识运用到实际问题的求解中。
最后通过课堂讨论和作业练习,巩固学生所学知识,提高其解题能力。
七、教学过程7.1 微积分基本概念回顾•概念回顾:导数、微分、积分•讲解导数、微分、积分的概念和定义7.2 微积分基本定理•基本定理的含义•讲解牛顿-莱布尼茨公式和积分中值定理•示范范例:经典题目实例演练•基本公式的介绍•通过例题进行演示和讲解7.4 微积分的应用•经典实例的讲解:曲线长度计算、定积分求解物体质心和重心、体积和表面积计算•案例实践:综合应用进行例题演示八、课程作业1.理解微积分基本理论,总结基本概念和定义,并构思相应的例子。
[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分.知识点一 导数与定积分的关系f (x )d x 等于函数f (x )的任意一个原函数F (x )(F ′(x )=f (x ))在积分区间[a ,b ]上的改变量F (b )-F (a ).以路程和速度之间的关系为例解释如下:如果物体运动的速度函数为v =v (t ),那么在时间区间[a ,b ]内物体的位移s 可以用定积分表示为s =v (t )d t .另一方面,如果已知该变速直线运动的路程函数为s =s (t ),那么在时间区间[a ,b ]内物体的位移为s (b )-s (a ),所以有v (t )d t =s (b )-s (a ).由于s ′(t )=v (t ),即s (t )为v (t )的原函数,这就是说,定积分v (t )d t 等于被积函数v (t )的原函数s (t )在区间[a ,b ]上的增量s (b )-s (a ).思考 函数f (x )与其一个原函数的关系: (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos x ; (7)若f (x )=cos x ,则F (x )=sin x . 知识点二 微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么f (x )d x =F (b )-F (a ). 思考 (1)函数f (x )的原函数F (x )是否唯一?(2)用微积分基本定理计算简单定积分的步骤是什么? 答案 (1)不唯一.(2)①把被积函数f (x )变为幂函数、正弦函数、余弦函数、指数函数等初等函数与常数的和或差;②用求导公式找到F (x ),使得F ′(x )=f (x ); ③利用微积分基本定理求出定积分的值.题型一 求简单函数的定积分 例1 计算下列定积分. (1)3d x ;(2)(2x +3)d x ; (3) (4x -x 2)d x ;(4)(x -1)5d x . 解 (1)因为(3x )′=3,所以3d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10. (3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203.(4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以 (x -1)5d x =16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6=16. 反思与感悟 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②若F (x )是f (x )的原函数,则F (x )+C (C 为常数)也是f (x )的原函数.随着常数C 的变化,f (x )有无穷多个原函数,这是因为F ′(x )=f (x ),则[F (x )+C ]′=F ′(x )=f (x )的缘故.因为⎠⎛ab f (x )d x=[F (x )+C ]|b a =[F (b )+C ]-[F (a )+C ]=F (b )-F (a )=F (x )|b a ,所以利用f (x )的原函数计算定积分时,一般只写一个最简单的原函数,不用再加任意常数C 了. 跟踪训练1 求下列函数的定积分: (1)⎝⎛⎭⎫x +1x 2d x ;(2)x (1+x )d x . 解 (1)⎝⎛⎭⎫x +1x 2d x =⎠⎛12⎝⎛⎭⎫x 2+2+1x 2d x =⎠⎛12x 2d x +⎠⎛122d x +⎠⎛121x2d x =13x 3⎪⎪⎪ 21+2 x ⎪⎪⎪ 21 +⎝⎛⎭⎫-12⎪⎪⎪21=13×(23-13)+2×(2-1)-⎝⎛⎭⎫12-1 =296. (2)⎠⎛49x (1+x )d x=⎠⎛49(x +x )d x=⎝⎛⎭⎫23x x +12x 2⎪⎪⎪94=⎝⎛⎭⎫23×9×3+12×92-⎝⎛⎭⎫23×4×2+12×42 =2716. 题型二 求分段函数的定积分 例2 求函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1),x 2,x ∈[1,2),2x ,x ∈[2,3]在区间[0,3]上的定积分.解 由定积分的性质知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x 2d x +⎠⎛232x d x=x 44⎪⎪⎪10+x 33⎪⎪⎪21+2x ln 2⎪⎪⎪32=14+83-13+8ln 2-4ln 2 =3112+4ln 2. 反思与感悟 (1)分段函数在区间[a ,b ]上的定积分可分成几个定积分的和的形式.(2)分段的标准是确定每一段上的函数表达式,即按照原函数分段的情况分就可以. 跟踪训练2 求下列定积分: (1)⎠⎛02|x 2-1|d x ;(2) ⎠⎜⎛0π21-sin 2x d x .解 (1)∵y =|x 2-1|=⎩⎪⎨⎪⎧1-x 2,0≤x <1,x 2-1,1≤x ≤2,∴⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝⎛⎭⎫x -x 33⎪⎪⎪10+⎝⎛⎭⎫x 33-x ⎪⎪⎪21=⎝⎛⎭⎫1-13+⎝⎛⎭⎫83-2-⎝⎛⎭⎫13-1 =2.(2) ⎠⎜⎛0π21-sin 2x d x=⎠⎜⎛0π2|sin x -cos x |d x=⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2 (sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=⎝⎛⎭⎫22+22-1+(-1)-⎝⎛⎭⎫-22-22 =22-2.题型三 定积分的简单应用例3 已知f (a )=⎠⎛01 (2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛01 (2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10 =23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.反思与感悟 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪训练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2.① 又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01 (ax 2+bx +c )d x=⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪10 =13a +12b +c , ∴13a +12b +c =-2,③ 由①②③式得a =6,b =0,c =-4.1.⎠⎜⎛0π4cos 2xcos x +sin x d x 等于( )A.2(2-1)B.2+1C.2-1D.2-2答案 C解析 结合微积分基本定理,得⎠⎜⎛0π4cos 2x -sin 2xcos x +sin x d x =⎠⎜⎛0π4 (cos x -sin x )d x =(sin x +cos x )⎪⎪⎪π40=2-1. 2.下列定积分的值等于1的是( )A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛01x d x =12x 2⎪⎪⎪ 10=12,⎠⎛01(x +1)d x =⎝⎛⎭⎫12x 2+x ⎪⎪⎪ 10=12+1=32,⎠⎛011d x =x ⎪⎪⎪10=1,⎠⎛0112d x=12x ⎪⎪⎪10=12.故选C.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x = . 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪20-x 23⎪⎪⎪20=83-43=43. 4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x <1,3-x ,1≤x ≤2,则⎠⎛02f (x )d x = .答案176解析 ⎠⎛02f (x )d x =⎠⎛01(x 2+1)d x +⎠⎛12(3-x )d x=⎝⎛⎭⎫x 33+x ⎪⎪⎪10+⎝⎛⎭⎫3x -x 22⎪⎪⎪21=176.5.已知函数f (x )为偶函数,且⎠⎛06f (x )d x =8,则⎠⎛-66 f (x )d x = .答案 16解析 因为函数f (x )为偶函数, 且⎠⎛06f (x )d x =8,所以⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.函数y =⎠⎛0x cos x d x 的导数是( )A.cos xB.-sin xC.cos x -1D.sin x 答案 A解析 (sin x )′=cos x ,⎠⎛0x cos x d x =sin x ⎪⎪⎪x0=sin x ,故选A. 2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A.F (x )=13x 3B.F (x )=x 3C.F (x )=13x 3+1D.F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3. ⎠⎛-40|x +2|d x 等于( )A. ⎠⎛-40 (x +2)d xB. ⎠⎛-40 (-x -2)d xC.⎠⎛-4-2(x +2)d x +⎠⎛-202(-x -2)d xD.⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴⎠⎛-40|x +2|d x =⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x .故选D.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32B.43C.23D.-23 答案 B解析 ⎠⎛-11f (x )d x =⎠⎛-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+x |10=13+1=43,故选B. 5.⎠⎜⎛0π2sin 2x2d x 等于( )A.π4 B.π2-1 C.2 D.π-24答案 D解析 ⎠⎜⎛0π2sin 2x 2d x =⎠⎜⎛0π21-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 6.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D. S 3<S 2<S 1答案 B 解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.二、填空题7.⎠⎛-11 (1-x 2+x )d x = .答案 π2解析 ⎠⎛-11 (1-x 2+x )d x =⎠⎛-111-x 2d x +⎠⎛-11x d x ,根据定积分的几何意义可知⎠⎛-111-x 2d x 等于半径为1的半圆的面积, 即⎠⎛-111-x 2d x =π2,⎠⎛-11x d x =12x 2|1-1=0,∴⎠⎛-11 (1-x 2+x )d x =π2.8.若⎠⎛0T x 2d x =9,则常数T 的值为 .答案 3解析 ⎠⎛0T x 2d x = 13x 3⎪⎪⎪t 0=13T 3=9,即T 3=27,解得T =3. 9.设函数f (x )=ax 2+c (a ≠0),⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0= .答案33解析 由⎠⎛01f (x )d x =f (x 0),得⎠⎛1(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =ax 20+c ,∴a 3=ax 20,∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33.故填33. 10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a = .答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3⎪⎪⎪a=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1. 三、解答题11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛01bx d x =13a +12b =176. 由⎩⎨⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.即f (x )=4x +3. 12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x=⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x=x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2 =-512+432+4ln 2.13.求定积分⎠⎛-43|x +a |d x .解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛-43(x +a )d x =⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛-a3 (x +a )d x=⎝⎛⎭⎫-x 22-ax ⎪⎪-a-4+⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛-43[-(x +a )]d x =⎝⎛⎭⎫-x 22-ax ⎪⎪⎪3-4=-7a +72. 综上,得⎠⎛-43|x +a |d x =⎩⎪⎨⎪⎧7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).。
【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。
定积分与微积分基本定理教学重点:定积分的概念、定积分的几何意义.求简单的定积分,微积分基本定理的应用教学难点:定积分的概念、求曲边图形面积.一.定积分的概念回忆前面曲边图形面积,变速运动的路程等问题的解决方法,这几个问题都有什么共同点呢?分割→以直代曲→求和→取极限(逼近一般地,设函数()f x 在区间[,]a b 上连续,分割 用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=), 以直代曲 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,每份小曲边梯形的面积近似为()i f x ξ∆ 求和:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑取极限 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
思考 定积分()baf x dx ⎰是一个常数还是个函数?即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .常见定积分 曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr=⎰理解 本来 面积=底⨯高 路程=速度⨯时间 功=力⨯位移因为都是不规则的,所以都用先分割,再以直代曲,这样就可以相乘了,再求和 ,再取极限。
二.定积分的几何性质 定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,。
微积分基本定理(第一课时)(教学案)♦一、学习目标定位学习目标:通过实例,直观了解微积分基本定理的含义,会用牛顿 的定积分学习重点:1、 微积分基本定理的内容2、 用微积分基本定理的求简单的定积分学习难点:微积分基本定理的引入♦二、新课导入分析:求解过程遇到麻烦,究其原因“和式难求”。
就需寻求新的解决方法。
♦三、新知探究1. 变速直线运动中 位置函数与速度函数 之间的联系一个作变速直线运动的物体的位移满足函数 y =y(t),由导数的概念可知,它 在任意时刻t 的速度为 设这个物体在时间段l.a,bl 内的位移为s,试用 y(t),v(t)表示 s 。
问题分解:1)如何用y(t)表示[a,b ]内的位移s?- 2)如何用v(t)表示[a,b ]内的位移s?-莱布尼兹公式求简单复习定积分的概念试用定义计算:丄dx 的值.解:dx.=x_1limlimnns2.微积分基本公式或牛顿一莱布尼兹公式一般的,如果函数f(x)是区间la,b 1上的连续函数,并且F(x)二f(x),那么,b.f (x)dx二_______________ 。
这就是微积分基本定理,也叫牛顿 --- 莱布尼兹a公式。
, — b也记作:f (x)dx = ________________ = ______________ 。
L a•说明:(!).它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题。
我们可以用f(x)的原函数(即满足F (x) f (x))的数值差F(b)-F(a)来计算f(x)在[a,b]上的定积分.(2)。
它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
思考并回答下列问题(1)与函数f(x)相对应的F(x)唯一吗?如果不唯一,它们之间有什么关系?原函数的选择影响最后的计算结果吗?b(2)计算定积分 f(x)dx 的关键是什么?⑶寻找函数f (x)的原函数F(x)的方法是什么?(4)利用基本初等函数的求导公式求下列函数的原函数例2 .计算下列定积分:■: 2). 2:\sin xdx, sin xdx, sin xdx 。
1.6微积分基本定理一、教学目标1.核心素养通过微积分基本定理的学习,提高推理论证、抽象概括能力,体会由局部到整体、具体到一般的数学思想.2.学习目标通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义,体会由局部到整体、具体到一般的思想.3.学习重点通过探究变速直线运动的速度与位移的关系,直观了解微积分基本定理的含义,并能正确应用基本定理计算简单的定积分.4.学习难点了解微积分基本定理的含义.二、教学设计(一)课前设计1.预习任务阅读课本1.6节,思考:(1)什么是微积分基本定理?(2)怎样利用微积分基本定理求定积分的值?(3)当曲边梯形的位置位于x 轴下方时,怎样求定积分的值?2.预习自测1.043x dx -+⎰的值为( ) A .-2B .0C .5D .12答案:C .2.121dx x ⎰等于( )A .-2ln2B .2ln2C .-ln2D .ln2答案:D .3.由曲线y =x 3,直线x =0,x =1及y =0所围成的曲边梯形的面积为( )A .1B .12C .13D .14答案:D .(二)课堂设计1.知识回顾1)定积分的几何意义:如果在区间[,]a b 上()f x 连续且恒有()0f x ≥,则定积分()ba f x dx ⎰的几何意义是由,,0x a xb y ===与()y f x =所围成的曲边梯形的面积.2)定积分的性质:(1)()()b ba akf x dx k f x dx =⎰⎰ (k 为常数) (2)1212[()()]()()b b b a a af x f x dx f x dx f x dx ±=±⎰⎰⎰; (3)()()()b c b a a cf x dx f x dx f x dx =±⎰⎰⎰(其中a c b <<). 2.问题探究活动一:探讨导数与积分的关系我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法.有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例:设一物体沿直线作变速运动,在时刻t 时物体所在位置为S (t ),速度为v (t )(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰.另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=. 活动二:证明微积分基本定理对于一般函数()f x ,设()()F x f x '=,是否也有()()()ba f x dx Fb F a =-⎰? 若上式成立,我们就找到了()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法.设()()F x f x '=则在[,]a b 上,⊿y =()()F b F a -将[,]a b 分成n 等份,在第i 个区间[xi -1,xi ]上,记⊿yi =F (x i )-F (xi -1),则 ⊿y =∑⊿yi 如下图,因为⊿hi =f (xi -1) ⊿x 而⊿yi ≈⊿hi 所以⊿y ≈∑⊿hi =∑f (xi -1) ⊿x故⊿y =lim ∑⊿hi =∑f (xi -1) ⊿x =⎰b a dx x f )(即⎰b a dx x f )(=()()F b F a -所以有微积分基本定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()b a f x dx F b F a =-⎰⎰b a dx x f )(为了方便起见,还常用()|ba F x 表示()()Fb F a -,即()()|()()bb a a f x dx F x F b F a ==-⎰该式称之为微积分基本公式或牛顿—莱布尼兹公式.牛顿-莱布尼茨公式指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁.它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础.因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果.例1.计算下列定积分:(1)211dx x ⎰;(2)3211(2)x dx x-⎰. 解:(1)因为'1(ln )x x=, 所以22111ln |ln 2ln1ln 2dx x x==-=⎰. (2))因为2''211()2,()x x x x==-, 所以3332211111(2)2x dx xdx dx x x -=-⎰⎰⎰233111122||(91)(1)33x x =+=-+-=. 点拨:准确求出被积函数的原函数是求解本题的关键例2.计算下列定积分:2200sin ,sin ,sin xdx xdx xdx ππππ⎰⎰⎰. 由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论. 解:因为'(cos )sin x x -=,所以00sin (cos )|(cos )(cos 0)2xdx x πππ=-=---=⎰, 22sin (cos )|(cos 2)(cos )2xdx x ππππππ=-=---=-⎰, 2200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:(1)当对应的曲边梯形位于x 轴上方时(图1.6一3),定积分的值取正值,且等于曲边梯形的面积;图1.6一3(2)(2)当对应的曲边梯形位于x 轴下方时(图1.6一4),定积分的值取负值,且等于曲边梯形的面积的相反数;( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.点拨:利用定积分的几何意义是解决本题的关键.例3.汽车以每小时32公里速度行驶,到某处需要减速停车.设汽车以等减速度a =1.8米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?解:首先要求出从刹车开始到停车经过了多少时间.当t =0时,汽车速度0v =32公里/小时=3210003600⨯米/秒≈8.88米/秒,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从(t)=8.88-1.8t=0v 解得8.88t= 4.931.8≈秒于是在这段时间内,汽车所走过的距离是 4.934.9300(t)(8.88 1.8t)s v dt dt ==-⎰⎰= 4.93201(8.88 1.8t )21.902-⨯≈米,即在刹车后,汽车需走过21.90米才能停住.点拨:可以看出,求曲边梯形的面积和求变速直线运动的路程的过程就是求解定积分的过程,所以以后遇到类似的题就可以直接使用定积分来做.3.课堂总结【知识梳理】1.微积分基本定理:如果()f x 是区间[,]a b 上的连续函数,并且()()F x f x '=,那么()()()()b b a af x dx F x F b F a ==-⎰.这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.我们常常把定理中的()F x 称为()f x 的原函数.2.定积分的取值定积分的值可能取正值也可能为负值,还可能是0:(1)当对应的曲边梯形位于x 轴上方时,定积分的值取正值,且等于曲边梯形的面积;(2)当对应的曲边梯形位于x 轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数;(3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时,定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.【重难点突破】(1)微积分基本定理①该定理揭示了导数与定积分之间的关系,即求积分与导数互为逆运算.②微积分基本定理提供了一种有效的求定积分的方法,且这种方法往往比利用定积分的定义求定积分简单.利用微积分基本定理求定积分()b af x dx ⎰的关键是找到()()F x f x '=的函数()F x ,即找到()f x 的原函数.通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出()F x .③被积函数的原函数有很多,即若F (x )是被积函数f (x )的一个原函数,那么F (x )+C (C 为常数)也是被积函数f (x )的原函数.但是在实际运算时,不论如何选择常数C (或者是忽略C )都没有关系,事实上,以F (x )+C 代替微积分基本定理中的F (x )有⎠⎛ab f (x )dx =[F (b )+C ]-[F (a )+C ]=F (b )-F (a ). (2)利用微积分基本定理计算定积分时:①常常先对被积函数化简,再求定积分;②当被积函数为分段函数时,常常分成几段积分的和的形式求解;③当被积函数含有绝对值符号时,常常先去掉绝对值符号再求定积分.(3)求定积分的主要方法有:①利用定积分的定义;②利用定积分的几何意义;③利用微积分基本定理.4.随堂检测1.⎠⎛01(e x +2x )dx 等于( ) A .1B .e -1C .eD .e +1答案:C解析:【知识点:微积分基本定理】⎠⎛01(e x +2x )dx =(e x +x 2)|10=(e 1+1)-e 0=e . 2.若S 1=⎠⎛12x 2dx ,S 2=⎠⎛121x dx ,S 3=⎠⎛12e x dx ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1答案:B解析:【知识点:微积分基本定理】S 1=⎠⎛12x 2dx =13x 3=13×23-13=73,S 2=⎠⎛121x dx =ln x =ln 2,S 3=⎠⎛12e x dx =e x =e 2-e =e (e -1).ln 2<ln e =1,且73<2.5<e (e -1),所以ln 2<73<e (e -1),即S 2<S 1<S 3.3.若⎠⎛0k (2x -3x 2)dx =0,则k 等于( ) A .0B .1C .0或1D .不确定答案:B解析:【知识点:微积分基本定理】⎠⎛0k (2x -3x 2)dx =(x 2-x 3) =k 2-k 3=0,∴k =0(舍去)或k =1.4.⎠⎛02|1-x |dx =( ) A .0B .1C .2D .-2答案:B解析:【知识点:微积分基本定理】⎠⎛02|1-x |dx =⎠⎛01(1-x )dx +⎠⎛12(x -1)dx =(x -12x 2)10|+(12x 2-x )21| =(1-12)+(12×4-2)-(12-1)=1.5.⎠⎛-11(x 2+sin x )dx =________. 答案:23解析:【知识点:微积分基本定理】∵(13x 3-cos x )′=x 2+sin x ,∴⎠⎛-11 (x 2+sin x )dx =(13x 3-cos x )11|-=23. (三)课后作业基础型 自主突破1.4232(30)d x x x +-=⎰( ) A .56B .28C.563D .14答案:C解析:【知识点:微积分基本定理】4423342211(30)d (30)34x x x x x x +-=+-⎰=13(43-23)+14(44-24)-30(4-2)=563. 2.若F ′(x )=x 2,则F (x )的解析式不正确的是( )A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案:B解析:【知识点:微积分基本定理】3.若2111d 2b x x =⎰,则b =( ) A .32B .2C .3D .4答案:B解析:【知识点:微积分基本定理】 2111111d (1)2bbx x x b =-=--=⎰,解得2b = 4.直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A .43B .2C .83D.答案:C解析:【知识点:定积分求面积】l 与C 围成的图形的面积为诶2232228(1)d ()4123x x x x ---=-=⎰ 5.计算定积分20cos(2)3x dx ππ+=⎰___________.答案:解析:【知识点:微积分基本定理】22001cos(2)sin(2)323x dx x ππππ+=+=⎰6.计算下列定积分:(1)220(42)(4)d x x x --⎰ (2)22123d x x x x+-⎰ (3)220(sin cos )d 2x x x π+⎰答案:见解析解析:【知识点:定积分的简单应用】(1)2222300(42)(4)d (16842)d x x x x x x x --=--+=⎰⎰22340413240(164)321683233x x x x --+=--+= (2)2222211123317d (2)d (23ln )3ln 222x x x x x x x x x x +-=+-=+-=-⎰⎰(3)222200cos 1sin 3(sin cos )d (sin )d cos 222224x x x x x x x x x ππππ+⎛⎫+=+=-++=+ ⎪⎝⎭⎰⎰能力型 师生共研7.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A.1B.2C.-1D.-2 答案:A解析:【知识点:微积分基本定理】f (1)=lg1=0,23300(0)3d aaf t t t a ===⎰,由f (f (1))=1,得a 3=1,a =1.8.若直线l 1:x +ay -1=0与l 2:4x -2y +3=0垂直,则积分⎠⎛-a a (x 3+sin x -5)dx 的值为( ) A .6+2sin2 B .-6-2cos2 C .20 D .-20 答案:D解析:【知识点:微积分基本定理,两直线垂直】 由l 1⊥l 2,可得a =2,∴原式=22233222(sin 5)d (sin )d (5)d 02020x x x x x x x ---+-=++-=-=-⎰⎰⎰9.已知f (x )是一次函数且10()d 5f x x =⎰,1017()d 6xf x x =⎰,则f (x )的解析式为( ) A .4x +3 B .3x +4 C .-4x +3 D .-3x +4答案:A解析:【知识点:微积分基本定理】 设f (x )=ax +b (a ≠0),则xf (x )=ax 2+bx ,1120()d ()522a af x x x bx b =+=+=⎰①113217()d ()32326a b a b xf x x x x =+=+=⎰②,联立①②得⎩⎪⎨⎪⎧a2+b =5a 3+b 2=176⇒⎩⎨⎧a =4b =3,∴f (x )=4x +310.若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )dx =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是________(填序号). 答案:①③解析:【知识点:微积分基本定理】①中⎠⎛-11f (x )g (x )dx =⎠⎛-11⎝ ⎛⎭⎪⎫sin 12x cos 12x dx =⎠⎛-11⎝⎛⎭⎪⎫12sin x dx =0;②中⎠⎛-11f (x )g (x )dx =⎠⎛-11(x +1)(x -1)dx =⎠⎛-11(x 2-1)dx =⎝ ⎛⎭⎪⎫x 33-x ⎪⎪⎪1-1=-43≠0;③中f (x )·g (x )=x 3为奇函数,在[-1,1]上的积分为0,故①③满足条件. 探究型 多维突破11.定义在R 上的可导函数y =f (x ),如果存在x 0∈[a ,b ],使得f (x 0)=⎠⎛abf (x )d x b -a成立,则称x 0为函数f (x )在区间[a ,b ]上的“平均值点”,那么函数f (x )=x 3-3x 在区间[-2,2]上“平均值点”的个数为( ) A .1 B .2 C .3 D .4 答案:C解析:【知识点:微积分基本定理】由已知得:f (x 0)=242232213(3)42044x x x x dx --⎛⎫- ⎪-⎝⎭==⎰,即x 30-3x 0=0,解得:x 0=0或x 0=±3,∴f (x )的平均值点有3个.12.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为___________.答案:45解析:【知识点:定积分求面积】 当210≤≤x ,线段AB 的方程为x y 10=;当121≤<x 时,线段BC 方程为1010+-=x y ,即函数⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤==121,1010210,10)(x x x x x f y ,所以⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤==121,1010210,10)(22x x x x x x xf y ,函数与x 轴围成的图形面积为1122210210(1010)x dx x x dx +-+⎰⎰1123321021010(5)33x x x =+-+45=.自助餐1.定积分⎠⎛01(2x +e x )dx 的值为( )A .e +2B .e +1C .eD .e -1 答案:C解析:【知识点:微积分基本定理】2.设f (x )=⎩⎨⎧x 20≤x <1,2-x 1≤x ≤2.则⎠⎛02f (x )dx 等于( )A .34 B .45 C .56 D .不存在 答案:C解析:【知识点:微积分基本定理】⎠⎛02f (x )dx =⎠⎛01x 2dx +⎠⎛12(2-x )dx 3.若⎠⎛1a (2x +1x )dx =3+ln2且a >1,则实数a 的值是( )A .2B .3C .5D .6 答案:A解析:【知识点:微积分基本定理】 4.函数F (x )=⎠⎛0x cos tdt 的导数是( )A .()cos F x x '=B .()sin F x x '=C .()cos F x x '=-D .()sin F x x '=- 答案:A解析:【知识点:微积分基本定理】 5.(3)d ba f x x '=⎰( ) A .()()fb f a -B .(3)(3)f b f a -C .1[(3)(3)]3f b f a - D .3[(3)(3)]f b f a - 答案:C解析:【知识点:微积分基本定理】因为错误!未找到引用源。
1.4.2微积分基本定理
【教学目标】1.通过实例直观了解微积分基本定理的含义,会求简单的定积分,体会微积分定理的优越性;2.体会导数与定积分的关系,感受极限的思想;3.渗透“质量互变、对立统一”的观点.
【教学重点】定理的应用 【教学难点】定理的推导
一、课前预习:(阅读教材40—41页)
微积分定理:如果 ,且)(x f 在],[b a 上可积,则
⎰=b a dx x f )( .其中)(x F 叫做)(x f 的一个 .
写成形式:⎰=b
a dx x f )(
二、课上学习:(※参照教材42页完成下列例题)
例1.求值:
(1)⎰π
0sin xdx (2)⎰π
20sin xdx 思考:曲线x y sin =与x 轴在区间],0[π,]2,0[π上所围成的图形面积分别是多少?
※几种典型的曲边梯形面积的求法:
1.()[,]()0y f x a b f x =≥若在上有, 曲边梯形的面积为:
2. ()[,]()0y f x a b f x =≤若在上有,曲边梯形的面积为:
3.(),()[,]()()y f x y g x a b f x g x ==≥若在上有,阴影部分的面积为:
例2.计算(1)dx x
⎰912 (2)⎰+212)1(dx x
运用微积分定理说明:
dx x f dx x f b a ⎰⎰=a b )(-)( ; ⎰=b a dx x f )(⎰⎰+b c c a dx x f dx x f )()( (b c a <<)
三、课后练习:
1.[2013·北京] 直线l 过抛物线C :y x
42=的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于
2.[2013·湖南] 若902=⎰dx x T
则常数T 的值为________.
3.[2013·江西] 若⎰=2121dx x s ,⎰=2121dx x
s ,⎰=213dx e s x ,则321,,s s s 的大小关系
为 . 4.[2012年福建]如图所示,在边长为1的正方形OABC 中任取
一点P ,则点P 恰好取自阴影部分的概率为
5.[2012年高考(江西理)]计算定积分
121(sin )x x dx -+=⎰___________.。