典型信号的傅里叶变换
- 格式:ppt
- 大小:1.96 MB
- 文档页数:28
8个典型信号的傅里叶变换1. 常数信号(直流信号)这个常数信号啊,就像一个超级稳定的家伙,一直保持一个值不变。
它的傅里叶变换可有趣啦,就是一个冲激函数(狄拉克函数)在频率为0的地方。
你可以想象啊,常数信号就只有一个频率成分,那就是0频率,就像一个静止不动的状态在频率域里的表示呢。
2. 正弦信号。
正弦信号就像一个有规律的摇摆舞者。
它的傅里叶变换呢,是在正负它的角频率处有两个冲激函数。
比如说一个正弦函数Asin(ω_0t),在频率ω = ω_0和ω=-ω_0的地方有两个冲激。
这就好像在说,正弦信号就只有一个频率在那欢快地跳动,这个频率就是它自己的角频率ω_0,一正一负就像在频率轴上对称地站着两个代表它的小尖刺。
3. 余弦信号。
余弦信号跟正弦信号是近亲呢。
Acos(ω_0t)的傅里叶变换也是在正负它的角频率处有两个冲激函数。
不过和正弦信号有点小区别,就像是两个风格相似但又有点不同的舞者。
余弦信号的傅里叶变换,那两个冲激函数就像是在频率轴上标记着它自己独特的角频率ω_0的两个小灯塔。
4. 单位冲激信号(狄拉克函数)这个单位冲激信号啊,就像一个超级突然的小爆炸,瞬间爆发然后就没了。
它的傅里叶变换可神奇了,是一个常数1。
你想啊,这个小爆炸包含了所有频率成分,就像一个超级大杂烩,在频率域里就变成了一个平坦的1,就好像所有频率都被它平等对待,一股脑儿地全在里面了。
5. 矩形脉冲信号。
矩形脉冲信号就像一个突然冒出来又突然消失的小方块。
它的傅里叶变换是Aτ Sa((ωτ)/(2)),这里的A是脉冲的幅度,τ是脉冲的宽度,Sa函数是(sin x)/(x)。
这个变换就像是把矩形脉冲信号这个小方块在时间域的信息,分散到了频率域里,就像把一个集中的小方块打散成了好多频率成分,那些频率成分按照Sa函数的规律分布着。
6. 三角脉冲信号。
三角脉冲信号就像一个小山峰。
它的傅里叶变换是Aτfrac{Sa^2((ωτ)/(2))}{ω^2}。
tf(t)傅里叶变换傅里叶变换(Fourier Transform,下文简称FT)是一种经典的信号处理方法,它可以将一个时间信号转换为频域中的频率分量表示。
FT的应用非常广泛,包括声音信号处理、图像处理、通信系统设计等等领域。
在介绍FT的具体内容之前,我们需要先解决一个问题:为什么要考虑时间信号的频域表示呢?设连续信号$f(t)$是包含许多不同频率分量的信号,那么它的频域表示$f(\omega)$可以描述这些不同频率分量的信息。
因此,当我们需要对信号进行滤波、降噪等处理时,频域表示可以提供非常有用的信息,例如哪些频率需要保留、哪些频率需要消除等等。
另外,FT还可以用于分析信号的周期性,例如音频信号中的基音频率就是一种典型的周期分量。
下面,我们来介绍FT的基本定义和性质。
一、傅里叶变换的定义设连续信号$f(t)$的傅里叶变换为$F(\omega)$,则有:$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$$其中,$j=\sqrt{-1}$。
在这个公式中,$e^{-j\omega t}$是一个复指数函数,它在时间轴上是一个旋转的单位圆,频率$\omega$表示每秒旋转的圈数。
将$f(t)$乘以$e^{-j\omega t}$,相当于对$f(t)$进行一个预处理,使得这个信号在频率轴上的值变成了$f(\omega)$。
因此,$F(\omega)$可以看做是$f(t)$在频域上的值,也称为$f(t)$的频谱。
注意,为了避免数学上的复杂性,我们在这里讨论的都是连续信号的傅里叶变换。
对于离散信号的傅里叶变换(Discrete Fourier Transform,下文简称DFT),定义和性质与连续信号的傅里叶变换并不完全一致,但本质相同。
1. 线性性质傅里叶变换具有线性性,即:$$\begin{aligned} &\text{若}\quadf_1(t)\xrightarrow{\text{FT}}F_1(\omega),\quadf_2(t)\xrightarrow{\text{FT}}F_2(\omega)\\ &\text{则}\quadaf_1(t)+bf_2(t)\xrightarrow{\text{FT}}aF_1(\omega)+bF_2(\omega) \end{aligned}$$其中,$a$和$b$为常数。
常用信号的傅里叶变换
傅里叶变换是一种常用的信号分析工具,通过将信号分解成一系列正弦和余弦函数的叠加,可以帮助我们更好地理解信号的频率特性。
以下是一些常见信号的傅里叶变换:
1. 正弦信号:由单一频率的正弦波组成,傅里叶变换为两个脉冲,分别在正弦频率和负正弦频率处。
2. 方波信号:由多个正弦波组成,傅里叶变换为一系列频率为
奇数倍基频的正弦波。
3. 三角波信号:同样由多个正弦波组成,但相比于方波信号,
频率成倍数递增。
傅里叶变换为一系列频率为奇数倍基频的正弦波,且振幅递减。
4. 噪声信号:由多个随机频率的波形组成,傅里叶变换为连续
分布的频率成分。
通过傅里叶变换,我们可以将信号在频域上展开,进而进行滤波、频率分析等操作,为信号处理和通信系统的设计提供了有力的工具。
- 1 -。