3-1系统时间响应的性能指标
- 格式:ppt
- 大小:151.00 KB
- 文档页数:19
软件系统响应时间的常见指标在评估软件系统的性能时,其中一个重要指标是响应时间。
软件系统的响应时间是指从用户请求发送到系统返回响应的时间间隔。
准确地衡量和监控响应时间对于确保用户满意度和系统效率至关重要。
以下是评估软件系统响应时间的常见指标:1. 平均响应时间(Average Response Time)平均响应时间是指系统处理用户请求并返回响应的平均时间。
它是所有请求的响应时间之和除以总请求数。
这个指标可以有效地衡量系统整体的性能表现。
2. 90th/95th/99th 响应时间(90th/95th/99th Percentile Response Time)这些指标是根据请求响应时间的百分位数计算的。
例如,90th响应时间表示90%的请求响应时间都小于等于该时间。
这些百分位数指标提供了系统响应时间分布的更详细信息,可以帮助识别系统中的性能瓶颈和潜在问题。
3. 峰值响应时间(Peak Response Time)峰值响应时间是在系统使用高峰期间测量的最长响应时间。
这个指标可以帮助判断系统在承受高负载时的表现。
4. 用户感知等待时间(Perceived Wait Time)用户感知等待时间是用户在发起请求后所感觉到的等待时间。
它通常比实际的系统响应时间长,因为它还考虑了用户在等待响应期间的主观感受。
减少用户感知等待时间可以提高系统的用户体验。
5. 平均事务响应时间(Average Transaction Response Time)平均事务响应时间是指完成一次完整事务所需的平均时间。
一个事务是指用户在系统中执行的一个操作序列。
通过衡量事务响应时间,可以评估系统在处理复杂操作时的性能。
请注意,这些指标只是衡量软件系统响应时间的常见方法。
根据具体的应用场景和需求,还可以使用其他指标和方法来评估和优化系统的性能。
第3章线性系统的时域分析法3.1复习笔记本章考点:二阶欠阻尼系统动态性能指标,系统稳定性分析(劳斯判据、赫尔维茨判据),稳态误差计算。
一、系统时间响应的性能指标1.典型输入信号控制系统中常用的一些基本输入信号如表3-1-1所示。
表3-1-1控制系统典型输入信号2.动态性能与稳态性能(1)动态性能指标t r——上升时间,h(t)从终值10%上升到终值90%所用的时间,有时也取t=0第一次上升到终值的时间(对有振荡的系统);t p——峰值时间,响应超过中值到达第一个峰值的时间;t s——调节时间,进入误差带且不超出误差带的最短时间;σ%——超调量,()()%100%()p c t c c σ-∞=⨯∞(2)稳态性能稳态误差e ss 是系统控制精度或抗扰动能力的一种度量,是指t→∞时,输出量与期望输出的偏差。
二、一阶系统的时域分析1.一阶系统的数学模型一阶系统的传递函数为:()1()1C s R s Ts +=2.一阶系统的时间响应一阶系统对典型输入信号的时间响应如表3-1-2所示。
表3-1-2一阶系统对典型输入信号的时间响应由表可知,线性定常系统的一个重要特性:系统对输入信号导数的响应,就等于系统对该输入信号响应的导数;或者,系统对输入信号积分的响应,就等于系统对该输入信号响应的积分,而积分常数由零输出初始条件确定。
三、二阶系统的时域分析1.二阶系统的数学模型二阶系统的传递函数的标准形式为:222()()()2n n n C s s R s s s ωζωωΦ++==其中,ωn 称为自然频率;ζ称为阻尼比。
2.欠阻尼二阶系统(重点)(1)当0<ζ<1时,为欠阻尼二阶系统,此时有一对共轭复根:21,2j 1n n s ζωωζ=-±-(2)单位阶跃响应()()d 211e sin 01n t c t t t ζωωβζ-=-+≥-式中,21arctanζβζ-=,或者β=arccosζ,21dn ωωζ=-各性能指标如下:t r =(π-β)/ωd2ππ1p d n t ωωζ==-2π1%e100%ζζσ--=⨯3.5(0.05)s nt ζω=∆=4.4(0.02)s nt ζω=∆=3.临界阻尼二阶系统(1)当ζ=1时,为临界阻尼二阶系统,此时s 1=s 2=-ωn 。
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=s p t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)(闭环传递函数)1(11111)(T Ts T s T Ks K s K s Ks -=+=+=+=+=Φλ:)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c tTTc eT t c tT 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-st T s e t h05.095.011=-=-st T e305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s∙==Φ===时 11 () ()1()ata s a C s h t e s s a ss a∙===-+=-+--时例1 已知系统结构图如右 其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH HH H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2 已知某单位反馈系统的单位阶跃响应为atet h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。