FDB风机液压系统讲解
- 格式:ppt
- 大小:7.83 MB
- 文档页数:56
1.液压系统工作原理液压系统主要由液压泵、叶尖电磁阀(3个)、高速刹车电磁阀(2个)、偏航电磁阀(2个)、蓄流器(类似于电路中的电容,里面充有氮气)、系统压力测量传感器、叶尖压力测量传感器及其相应油路组成。
1. 1 液压泵液压泵主要用于控制系统压力。
通过系统压力测量传感器测量系统压力,当系统压力低于140Bar时,启动液压泵,当系统压力达到150Bar时,停止液压泵工作。
如果液压泵连续工作超过设定时间(60s)仍未停止工作,此时报液压泵故障,执行正常停机,同时停止液压泵工作。
当系统压力低于120Bar,报系统压力低故障。
当系统压力大于165Bar时,报系统压力高故障。
1.2 叶尖压力叶尖压力通过控制3个叶尖电磁阀(Tip_in、Tip_Out1、Tip_out2)来实现。
Tip_in电磁阀为常开阀(失电时,断开),当其带电时,油路打开,油进入叶尖油缸,叶尖缓缓收回。
此时,如果Tip_Out1、Tip_out2电磁阀处于失电状态,油就会回流,叶尖就建不成压力。
所以,当需要收叶尖时,Tip_in 和Tip_Out1、Tip_out2电磁阀需要同时带电。
当叶尖压力低于102Bar时,Tip_in电磁阀持续得电;当叶尖压力达到106Bar时,Tip_in电磁阀失电。
当叶尖压力大于107Bar时,将Tip_Out2电磁阀失电100ms,用于泄压(主要防止叶尖压力较大冲破防爆膜)。
或者是执行定时泄压,即每180分钟将Tip_Out2电磁阀失电100ms 进行泄压。
在该过程中Tip_in电磁阀失电,Tip_Out1电磁阀带电。
当叶尖压力大于110Bar,报叶尖压力高故障。
当叶尖压力小于95Bar时,报叶尖压力低故障。
当需要甩叶尖时,Tip_in电磁阀失电,Tip_Out1、Tip_out2电磁阀也同时失电。
这时叶尖失去油压力,靠重力作用叶尖迅速甩出。
1.3 高速刹车电磁阀高速刹车电磁阀Rotor_brake1和Rotor_brake2用来控制高速闸的松开和抱紧。
液压风扇工作原理液压风扇是一种利用液压驱动的风机设备,它的工作原理是通过液体的流动来驱动叶轮旋转,从而实现风扇的工作。
液压风扇通常由液压马达、齿轮箱、叶轮、流体系统以及控制系统等组成。
首先,液压风扇的液压马达是实现动力输出的核心部件。
液压马达内部通常由一系列的齿轮或齿轮泵组成,当液压液从液压系统进入液压马达时,通过齿轮或齿轮泵的转动将液压能转换为机械能,驱动马达输出高速旋转的动力。
其次,液压马达输出的旋转动力通过齿轮箱传递到连接在马达上的叶轮。
齿轮箱内通常由一系列的齿轮系统组成,通过齿轮的啮合,将液压马达输出的高速旋转动力转变为叶轮所需的恰当转速,使叶轮得以以稳定的速度旋转。
在液压风扇中,叶轮是风扇的重要组成部分。
叶轮的作用是将通过齿轮箱传递过来的高速旋转动力转化为气流动能,从而形成强大的风力。
液压风扇通常采用的是多片叶片的结构,叶片通过与液压风扇外壳的间隙协作,将流体吸入并排出,产生大量的气流,形成强劲的风力。
液压风扇的流体系统也是其工作原理中的重要组成部分。
流体系统主要由液压系统、冷却系统和滤清系统组成。
液压系统负责将液压液送入液压马达,驱动马达输出动力。
冷却系统通过循环冷却液体来保持液压风扇的稳定运行温度,防止过热影响工作效率。
滤清系统则起到过滤液压液中的杂质和油污的作用,保持液压风扇的顺畅运行。
最后,液压风扇的控制系统是实现其工作原理中精确控制的关键部分。
控制系统通过精确控制液压液的供应和压力,从而调节液压马达的转速和叶轮的旋转速度。
通过调节流体进出量、液压液的压力等参数,能够实现对液压风扇转速和输出风量的精确控制,以满足不同使用环境和需求。
总结起来,液压风扇利用液体流动转换为机械能,通过液压马达、齿轮箱、叶轮、流体系统以及控制系统等组成,实现风扇的工作。
液压马达将液压能转换为机械能,齿轮箱将高速旋转的动力传递给叶轮,叶轮将动力转换为气流动能,形成强大的风力。
流体系统负责液压液的供应、冷却和过滤,而控制系统则实现对液压风扇的精确控制。
液压风扇原理
液压风扇是一种利用液体流体力学原理工作的设备。
其工作原理主要包括以下几个方面:
1. 液体循环系统:液压风扇内部有一个液体循环系统,由液体泵、液压管路和液压马达组成。
液体泵通过转动产生液压能,并将液体送入液压马达,形成液体循环。
2. 液压马达:液压马达是液压风扇的关键部件之一,它将液体的动能转换为机械能。
当液体泵将液体送入液压马达时,液压马达内的转子开始转动,提供机械动力。
3. 转子叶片:转子是液压风扇中的另一个重要部件,它是由一系列叶片组成的。
当液压马达内的转子开始转动时,转子叶片也随之转动。
通过转子叶片的旋转,液压风扇可以将空气吸入并迅速排出,产生强大的气流。
4. 控制系统:液压风扇的控制系统用于控制液体的流量和压力,以调节液压马达的转速。
通过调节液体的流量和压力,可以控制液压马达的输出功率,从而控制液压风扇的风量和风速。
液压风扇通过以上原理工作,具有风量大、风速快、可调节风量和风速等特点,广泛应用于工业、建筑、农业等领域的通风和散热需求中。
风电操作技术培训液压系统维护风电操作技术培训:液压系统维护一、引言液压系统是风力发电中不可或缺的重要组成部分。
本文将从液压系统的基本原理、维护重点和故障排除等方面进行探讨,旨在帮助风电操作人员提升液压系统维护的技术水平。
二、液压系统基本原理液压系统是利用液体传递能量的一种力传递方式。
其基本原理是利用液体在封闭容器中受到压力作用时,能够传递力量。
液压系统由液压泵、液压马达、液压缸等组件组成。
通过控制液压系统中液体的流动方向和压力大小,实现机械装置的运动控制。
三、液压系统维护重点1. 液压油的选用与更换液压油是液压系统正常运行的重要保证。
根据设备的要求,选择合适的液压油进行加注。
在使用过程中,定期检查液压油的清洁度和粘度,定期更换液压油以保证液压系统的正常运行。
2. 液压系统密封件的检查液压系统中的密封件承担着密封、防止泄漏的作用。
定期检查液压系统的密封件,如出现老化、磨损等情况,及时更换密封件,避免液压系统因泄漏而引发故障。
3. 液压系统管路与接头的检查液压系统管路与接头的松动、老化会导致液体泄漏,进而影响系统的正常工作。
定期检查液压系统管路与接头的紧固情况,如发现问题及时处理,确保系统工作的可靠性。
4. 液压系统过滤器的清洁与更换液压系统中的过滤器能够阻止杂质进入系统,保持液压油的清洁度。
定期清洁过滤器,并根据使用情况及时更换过滤器,以保证液压系统的正常运行。
四、液压系统常见故障排除1. 液压系统压力不稳定可能原因:液压泵内部损坏、液压油不足、压力调节阀故障等。
处理方法:对液压泵、液压油进行检查和维护,修复或更换故障部件。
2. 液压系统泄漏可能原因:密封件老化、管路接头松动、液压油管破裂等。
处理方法:检查液压系统的密封件、管路接头,并及时更换或紧固故障部件。
3. 液压系统运动缓慢可能原因:液压油粘度过大、液压泵内部损坏等。
处理方法:更换合适粘度的液压油,检查液压泵并维护或更换。
4. 液压系统噪音过大可能原因:液压泵内部损坏、泄漏等。
1.液压系统工作原理液压系统主要由液压泵、叶尖电磁阀(3个)、高速刹车电磁阀(2个)、偏航电磁阀(2个)、蓄流器(类似于电路中的电容,里面充有氮气)、系统压力测量传感器、叶尖压力测量传感器及其相应油路组成。
1. 1 液压泵液压泵主要用于控制系统压力。
通过系统压力测量传感器测量系统压力,当系统压力低于140Bar时,启动液压泵,当系统压力达到150Bar时,停止液压泵工作。
如果液压泵连续工作超过设定时间(60s)仍未停止工作,此时报液压泵故障,执行正常停机,同时停止液压泵工作。
当系统压力低于120Bar,报系统压力低故障。
当系统压力大于165Bar时,报系统压力高故障。
1.2 叶尖压力叶尖压力通过控制3个叶尖电磁阀(Tip_in、Tip_Out1、Tip_out2)来实现。
Tip_in电磁阀为常开阀(失电时,断开),当其带电时,油路打开,油进入叶尖油缸,叶尖缓缓收回。
此时,如果Tip_Out1、Tip_out2电磁阀处于失电状态,油就会回流,叶尖就建不成压力。
所以,当需要收叶尖时,Tip_in 和Tip_Out1、Tip_out2电磁阀需要同时带电。
当叶尖压力低于102Bar时,Tip_in电磁阀持续得电;当叶尖压力达到106Bar时,Tip_in电磁阀失电。
当叶尖压力大于107Bar时,将Tip_Out2电磁阀失电100ms,用于泄压(主要防止叶尖压力较大冲破防爆膜)。
或者是执行定时泄压,即每180分钟将Tip_Out2电磁阀失电100ms 进行泄压。
在该过程中Tip_in电磁阀失电,Tip_Out1电磁阀带电。
当叶尖压力大于110Bar,报叶尖压力高故障。
当叶尖压力小于95Bar时,报叶尖压力低故障。
当需要甩叶尖时,Tip_in电磁阀失电,Tip_Out1、Tip_out2电磁阀也同时失电。
这时叶尖失去油压力,靠重力作用叶尖迅速甩出。
1.3 高速刹车电磁阀高速刹车电磁阀Rotor_brake1和Rotor_brake2用来控制高速闸的松开和抱紧。
风电操作技术培训液压系统液压系统在风电操作技术中扮演着重要的角色。
本文将详细介绍液压系统在风电操作中的应用,同时探讨液压系统的工作原理和常见故障排除方法。
一、液压系统在风电操作中的应用在风电领域中,液压系统广泛应用于风力发电机组的控制系统和机械传动系统中。
在风力发电机组的控制系统中,液压系统主要用于风轮、偏航系统和调节系统的运动控制,确保风力发电机的安全高效运行。
在机械传动系统中,液压系统则用于叶轮变桨机构、变桨电机和变桨驱动器等关键部件的传动控制,确保风力发电机组的叶轮角度和转速控制。
二、液压系统的工作原理液压系统是基于流体力学原理的工作系统,其主要由液压泵、液压缸、阀门、油箱等组成。
液压泵将机械能转换为液压能,通过液压泵将液体推进到液压缸中,从而实现机械传动和运动控制。
液压系统的工作原理可以简单概括为以下几个步骤:1. 液压泵启动:当液压系统启动时,液压泵开始旋转,通过吸入液体并排出液体的方式,形成一个连续的液压能力。
2. 液压泵输出液压能:液压泵将输入的机械能转化为液压能,通过压力传递给液压缸。
3. 液压缸执行工作:液压缸接受到液压能后,通过活塞推动和传动机构,实现机械元件的运动控制。
4. 控制阀的作用:液压系统中的各种阀门,包括方向控制阀、流量控制阀和压力控制阀等,起到控制液压能流动方向、流量和压力的作用。
5. 液压能的回收:液压缸完成一定工作后,液压能需要回收,通常通过液压缸的负载返回和溢流阀控制。
三、常见故障排除方法液压系统在风电操作中常常面临各种故障,下面介绍几种常见故障的排除方法:1. 液压泵无压力输出:可能是液压泵内部损坏或阀门关闭不良,此时需要检查和更换液压泵或阀门。
2. 液压缸运动缓慢或停止:可能是液压泵输出液体流量不足或系统中存在漏油现象,此时需要检查和更换液压泵,同时修复漏油点。
3. 液压系统压力异常升高:可能是压力控制阀故障或其他阀门关闭不良,此时需要检查和更换压力控制阀或其他阀门。
液压系统(完整)介绍一、液压系统的基本概念液压系统,是一种利用液体传递压力和能量的动力传输系统。
它主要由液压泵、液压缸(或液压马达)、控制阀、油箱、油管等部件组成。
液压系统广泛应用于各类机械设备中,如挖掘机、起重机、汽车制动系统等,其优势在于结构紧凑、输出力大、操作简便。
二、液压系统的工作原理液压系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力能够大小不变地向各个方向传递。
具体来说,液压系统的工作过程如下:1. 液压泵:将机械能转化为液体的压力能,为系统提供动力源。
2. 液压缸(或液压马达):将液体的压力能转化为机械能,实现直线或旋转运动。
3. 控制阀:调节液体流动方向、压力和流量,实现对液压系统的控制。
4. 油箱:储存液压油,为系统提供油源。
5. 油管:连接各液压部件,传递压力和能量。
三、液压系统的分类1. 水基液压系统:以水作为工作介质,具有环保、成本低等优点,但易腐蚀金属、密封性能较差。
4. 气液联动液压系统:以气体和液体为工作介质,结合了气压传动和液压传动的优点,适用于特殊场合。
四、液压系统的关键部件详解1. 液压泵:作为液压系统的“心脏”,液压泵负责将低压油转化为高压油,为整个系统提供动力。
常见的液压泵有齿轮泵、叶片泵和柱塞泵等。
每种泵都有其独特的特点和适用范围,选择合适的液压泵对系统的性能至关重要。
2. 液压缸:液压缸是系统的执行元件,它将液压油的压力能转化为机械能,实现直线往复运动或推送力量。
根据结构不同,液压缸可分为活塞式、柱塞式和膜片式等。
3. 控制阀:控制阀是液压系统的“大脑”,它负责调节和分配液压油流动的方向、压力和流量。
常用的控制阀包括方向阀、压力阀和流量阀等,它们共同确保系统按照预定的要求稳定运行。
4. 滤清器:液压油中的杂质会对系统造成损害,滤清器的作用就是过滤液压油中的杂质,保护系统的正常运行。
合理选择和使用滤清器,对延长液压系统寿命具有重要意义。
五、液压系统的优势与应用1. 优势:力量大:液压系统能够实现大范围的力矩放大,轻松完成重物搬运等任务。
风力发电机调速器的机械液压系统介绍风力发电机是一种利用风能转化为电能的装置。
为了保证风力发电机的高效运转和电网的稳定连接,风力发电机调速器的机械液压系统扮演着重要角色。
该系统可以通过调节风力发电机的转速,使其稳定在最佳转速范围内,并通过调整叶片角度控制风力发电机的输出功率。
性能要求风力发电机调速器的机械液压系统要满足以下性能要求:1. 稳定性:机械液压系统需要保证在各种工作条件下的稳定性,确保风力发电机的稳定运行。
2. 敏捷性:机械液压系统需要具备快速响应的能力,以便能及时根据外部环境变化做出调整。
3. 精确性:机械液压系统需要具备高精度的调节能力,以保证风力发电机稳定运行并输出所需功率。
4. 可靠性:机械液压系统需要具备高可靠性,以保证风力发电机的长期稳定运行。
系统组成与工作原理机械液压系统主要由以下几部分组成:- 液压泵:将对风力发电机转速调节的控制信号转化为液压能量。
- 液压缸:通过控制油液的进出量,实现对风力发电机转速和叶片角度的调节。
- 控制阀组:根据传感器等反馈信息,控制液压缸的动作,实现对风力发电机的调节。
- 油箱和油路:提供液压系统所需的液压油,并通过管路将油液输送到各个液压元件。
机械液压系统的工作原理如下:1. 由控制信号触发,液压泵开始工作,将油液从油箱吸入,并通过管路输送到液压缸。
2. 控制阀组接收传感器等反馈信息,根据需要调节油液的流量和压力,控制液压缸的动作。
3. 液压缸根据控制阀组的指令,改变叶片角度和风力发电机的转速,使其保持在最佳工作状态。
4. 油液经过液压缸后返回油箱,完成液压系统的回路。
系统优化与发展趋势随着风力发电技术的不断发展,风力发电机调速器的机械液压系统也在不断优化和改进。
目前,一些新型的液压系统正在被研发和应用,以满足更高的性能要求和可靠性要求。
未来风力发电机调速器的机械液压系统有望实现以下方面的发展趋势:- 自适应控制:采用先进的控制算法和传感技术,实现风力发电机的自适应控制,提高系统的稳定性和敏捷性。
液压系统的介绍
液压系统是一种利用油液作为工作介质,通过油液的压力能来驱动液压执行机构工作的系统。
其主要由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油。
1.动力元件:主要是各种油泵,它的作用是将原动机(如电动机)的机械能转换成液体的压力能,从而向整个液压系统提供动力。
2.执行元件:如液压缸和液压马达,它们的作用是将液体的压力能转换为机械能,从而驱动负载做直线往复运动或回转运动。
3.控制元件:即各种液压阀,它们在液压系统中控制和调节液体的压力、流量和方向。
液压阀的种类繁多,根据功能不同,可分为压力控制阀(如溢流阀、减压阀、顺序阀、压力继电器等)、流量控制阀(如节流阀、调整阀、分流集流阀等)和方向控制阀(如单向阀、液控单向阀、梭阀、换向阀等)。
根据控制方式的不同,液压阀还可分为开关式控制阀、定值控制阀和比例控制阀。
4.辅助元件:包括油箱、滤油器、冷却器、加热器、蓄能器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位计、油温计等,它们在整个液压系统中起到保障系统正常运行和提供必要辅助功能的作用。
5.液压油:是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压油的选择对于液压系统的性能和寿命有着至关重要的影响。
液压系统的工作原理基于流体静力学中的帕斯卡定律,即利用油
液或其他液体在不可压缩的静止液体中,任何一点受到外力产生的效果会瞬间传递到流体的各点。
这使得我们可以通过较小的力产生较大的力,实现力的放大。
回答完毕。