俄歇电子能谱仪(AES)
- 格式:ppt
- 大小:1.46 MB
- 文档页数:21
§7.4 俄歇电子能谱(AES)俄歇电子能谱的基本机理是:入射电子束使原子内层能级电子电离,产生无辐射俄歇跃迁,用电子能谱仪在真空中对它们进行探测。
虽然早在1925年法国的物理学家俄歇(P.Auger )在用X 射线研究光电效应时就已发现俄歇电子,并对这种电子的产生给予了正确的解释。
但直到1968年哈里斯(L.A.Harris )采用微分电子线路,首创了微分形式俄歇电子能量分布曲线测定法后,解决了如何从强大的本底和噪声中把俄歇信号检测出来的问题,俄歇电子能谱开始进入实用化阶段。
1969年,帕尔姆堡(Palmberg )等引进了筒镜能量分析器,进一步提高了信噪比,使AES 达到很高的灵敏度和分析速度,而一年后出现的扫描俄歇显微探针系统(SAM )使AES 从定点分析发展为二维表面分析。
目前,俄歇电子能谱是表面科学领域中最广泛使用的表面化学成分分析仪器之一。
7.4.1 俄歇过程和俄歇电子能量当原子内层W 能级的一个电子被具有足够能量的光子或入射电子电离时,在W 能级产生一个空穴,该空穴立即就被较高能级的另一电子通过W X →跃迁所填充,多余的能量交给Y 能级上的电子,使之成为俄歇电子发射出去。
这种跃迁过程称为俄歇过程或俄歇效应(图7.4.1)。
一般用原子中出现空穴的能级次序来表示相应的俄歇过程。
上述过程用符号表示就是WXY ,表明W 空穴被X电子填充使Y电子成为俄歇电子。
通常把来自1s 壳层的电子标记为K ,来自2s 的电子标记为1L ,来自2p 的电子标记为2L 、3L 等;把来自价壳层的电子标记为V 。
一般最明显的俄歇跃迁都是X、Y主量子数相等,同时X、Y主量子数比W大一的过程,如KLL 、LMM 、MNN 和NOO 俄歇跃迁。
由WXY 跃迁产生的俄歇电子的动能,可近似地用经验公式估算,即: φ-∆+--=)()()(Z E Z E Z E E Y X W WXY (7.4.1) 其中φ为功函数,Z 是原子序数)3(≥Z 。
材料科学XPS 、AES、UPS、EDS四大能谱分析介绍能谱分析能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照射样品,使样品中电子受到激发而发射出来(这些自由电子带有样品表面信息),然后测量这些电子的产额(强度)对其能量的分布,从中获得有关信息的一类分析方法,广泛应用于材料表面分析技术。
主要有:俄歇电子能谱分析(AES)、X射线光电子能谱分析(XPS) 、紫外光电子能谱(UPS),能谱仪-电镜联用等方法。
仪器厂家1俄歇电子能谱法(AES)俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。
利用受激原子俄歇跃迁退激过程发射的俄歇电子对试样微区的表面成分进行的定性定量分析。
AES可以用于研究固体表面的能带结构、表面物理化学性质的变化(如表面吸附、脱附以及表面化学反应);用于材料组分的确定、纯度的检测、材料尤其是薄膜材料的生长等。
原理:俄歇电子的产生和俄歇电子跃迁过程:一定能量的电子束轰击固体样品表面,将样品内原子的内层电子击出,使原子处于高能的激发态。
外层电子跃迁到内层的电子空位,同时以两种方式释放能量:发射特征X射线;或引起另一外层电子电离,使其以特征能量射出固体样品表面,此即俄歇电子。
俄歇跃迁的方式不同,产生的俄歇电子能量不同。
上图所示俄歇跃迁所产生的俄歇电子可被标记为WXY跃迁。
如 KLL跃迁:K层电子被激发后,可产生KL1L1,KL1L2,KL2L3…等K系俄歇电子。
应用方向:1、通过俄歇电子谱研究化学组态:原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子相结合的其它(元素)原子的电负性等情况。
2、定性分析:对于特定的元素及特定的俄歇跃迁过程,其俄歇电子的能量是特征的。
由此,可根据俄歇电子的动能来定性分析样品表面物质的元素种类。
3、定量分析或半定量分析:俄歇电子强度与样品中对应原子的浓度有线性关系,据此可以进行元素的半定量分析。
即:样品表面原子受到电子束的轰击而电离,在电离原子的退激发过程中会释放出俄歇电子,这种电子具有对应于元素种类的固有能量,如:KLL俄歇电子能量E KLL= E K−2E LE K、E L分别为K、L能级的结合能数据收取电子探测器屏蔽罩溅射离子枪电子枪扫描电源样品(A)(B)(C)微量纯银的三种AES图谱Al AlSi 24.1 18.6 Al 8.4 6.1 Mg 0.7 2.2 Ca 1.8 6.3 B 3.0 4.1 F 1.8 0.4 O 61.1 61.8断口表面距表面较难测出Na各有特征峰Mo 2C石墨SiC硅片上的镍铬合金的深度分布(层厚确定)氧化膜镍铬硅片Au-Ni-Cu体系的深度分布以俄歇信号峰高作纵坐标以原子浓度作纵坐标浸泡前SBF 液中浸泡1h 后表面层组份变化不大X侵蚀后表面Na、Ca减少,富硅材料的化学稳定性内部(原始表面)钠钙玻璃受水侵蚀后表面的AES图谱CaOSi SFU 未处理的玻璃瓶二氟乙烷处理的玻璃瓶处理的玻璃瓶(耐久性最好)离子探针装置X溅射过程中能量和动量转换离子能量分析质量分析器源二次离子一次离子离子检测深度剖面分析图二次离子像SIMS原理示意图SIMS装置的构成SIMS测定Li2O-Al2O3-SiO2玻璃表面结构Depth profile curve of three-layered coating “A”on stainless steel substrate Sputtering times (s)0 200 400 600 800 1000 1200 1400 1600C o u nts 10610510410310102oxidized steel layeralumina layer Alumina/steel interphaseAl +10Fe +10Cr+10Ni +10CsFe +40CsNi +20CsCr +N a /S i-SiO2抗碱涂层玻璃纤维表面的BaO-TiO2uncoated fiber coated fiber 未涂层的E-玻璃纤维增强水泥材料在50°C 水中放置28d 后的SEM 照片×1000×1000×300×300×1000×1000×1000涂层的E-玻璃纤维增强水泥材料在50ºC 水中放置60d 后的SEM 照片100°C 1N NaOH 中1.5hSNMS spectrum of a 40BaO-40TiO 2-20SiO 2coatingtime (s)r e l a t i v e i n t e n s i t y (a .u .)侵蚀前SNMS spectrum of a 40BaO-40TiO 2-20SiO 2coatingtime (s)侵蚀前12000s=96nmSNMS spectrum of a 40BaO-40TiO 2-20SiO 2coating after corroded in 1N NaOH solution at 60°C after 144 h.time (s)Sputtering rate: 1s~0.008 nmr e l a t i v e i n t e n s i t y (a .u .)侵蚀后SNMS spectrum of the triple TiO 2/40BaO-40TiO 2-20SiO coatings on a silicate glass slide after corroded in 2N NaOH solution at 80°C after 72 h.time (s)Sputtering rate: 1s~0.008 nm多层膜的耐久性内部Al2O3concentration distributions of SiO2coated float glasses, annealed at 500 °C for different timesDifferent oxide concentration distributions of 4.6 mol%Na2O –95.4 mol% SiO2coated float glass, annealed at 500 °C for1020 min, also with a measurement of the major constituent SiO2)2(.2),(Dt x x erfc c c t x c Au o −−=涂在Ag上的果糖的SIMS谱氧化镁纯镁涂在Ag上的腺嘌呤的SIMS谱涂在Ag上的苯哌啶醋酸甲脂与柯卡因混合物的SIMS谱。
俄歇电子能谱仪(AES)分析方法介绍1.俄歇电子能谱仪(AES)俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的表面分析方法而显露头角,通过检测俄歇电子信号进行分析样品表面,是一种极表面(0-3nm)分析设备。
这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高,很高的空间分辨率,最小可达到6nm;能探测周期表上He以后的所有元素及元素分布;通过成分变化测量超薄膜厚。
它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。
2.俄歇电子能谱仪(AES)工作原理(1)原子内某一内层电子被激发电离从而形成空位,(2)一个较高能级的电子跃迁到该空位上,(3)再接着另一个电子被激发发射,形成无辐射跃迁过程,这一过程被称为Auger效应,被发射的电子称为Auger电子。
(4)俄歇电子能谱仪通过分析Auger电子的能量和数量,信号转化为元素种类和元素含量。
3.俄歇电子能谱仪(AES)可获取的参数(1)定性分析:定性除H和He以外的所有元素及化合态。
(2)元素分布:元素表面分布和深度分布,能获极小区域(表面最小6nm,深度最小0.5nm)的元素分布图。
(3)半定量分析:定量除H和He以外的所有元素,浓度极限为10-3。
(4)超薄膜厚:通过成分变化能测量最薄0.5nm薄膜的膜厚。
4.案例分析案例背景:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。
失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点,黑点直径3μm左右,考虑分析区域大小后选择分析区域最小AES进行分析,能准确分析污染物位置。
俄歇电子能谱仪(AES)分析:对被污染的Pad表面进行分析,结果如下图,位置1为污染位置,位置2为未污染位置。
结论:通过未污染位置和污染位置对比分析可知,发现污染位置主要为含K(20.6%)和S(13.6%)类物质,在未污染位置S含量为3.7%未发现K元素,推断污染位置存在K离子污染,并与S共同作用形成黑色污染物。