XPS和俄歇电子能谱
- 格式:ppt
- 大小:380.00 KB
- 文档页数:17
最常见表面分析技术为三种:XPS、AES和SIMS。
(1)AES —空间分辨率最高。
适合做导体和半导体材料表面的微区成分、化学态和元素分布分析;(2)XPS —破坏性最小,化学信息丰富,定量分析较好。
适合做导体和非导体,有机和无机体材料的表面成分和化学态分析。
(3)SIMS—灵敏度最高。
可以做导体和非导体,有机和无机体材料中H、He以及元素同位素分析。
此三种技术相互补充,相互配合,可获得最有用的搭配。
AES俄歇电子能谱:1、俄歇电子能谱(AES)当采用聚焦电子束激发源时,亦称为:扫描俄歇微探针( SAM)AES分析是以e束(或X-射线束)为激发源, 激发出样品表面的Auger电子, 分析Auger电子的能量和强度,可获元素种类、含量与分布、以及化学态等信息。
2、AES的主要特点与局限性:主要特点:(1)由于e束聚焦后其束斑小,AES的分辨率高,适于做微区分析:可进行点分析,线和面扫描。
(2)仅对样品表面2nm以浅的化学信息灵敏。
(3)俄歇电子的能量为物质特有,与入射粒子能量无关。
(4)可分析除H和He以外的各种元素,轻元素的灵敏度较高.(5)AES可分析元素的价态。
由于很难找到化学位移的标准数据,因此谱图的解释比较困难。
(6)可借助离子刻蚀进行深度分析,实现界面和多层材料的剖析,深度分辨率较XPS更好。
局限:(1)e束带电荷,对绝缘材料分析存在荷电影响。
(2)e束能量较高,对绝热材料易致损伤。
(3)定量分析的准确度不高3、从Auger电子能谱图可以看出:(1)峰位(能量),由元素特定原子结构确定;(2)峰数,由元素特定原子结构确定(可由量子力学估计);(3)各峰相对强度大小,也是该元素特征;以上3点是AES定性分析的依据,这些数据均有手册可查.4、AES具有五个有用的特征量:①特征能量;②强度;③峰位移;④谱线宽;⑤线型。
由AES的这五方面特征,可获如下表面特征:化学组成、覆盖度、键中的电荷转移、电子态密度和表面键中的电子能级等。
X射线光电子能谱(XPS)固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。
目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。
AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。
SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。
本节内容主要对X射线光电子能谱的研究现状以及一些基本概念,XPS的分析原理、实际应用,能谱仪的构造、实验方法等进行简单介绍。
1 XPS技术的应用及特点概述X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。
其主要应用:1).元素的定性分析,可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素;2).元素的定量分析,根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度;3).固体表面分析,包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等;4).化合物的结构,可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息;5).分子生物学中的应用。
其中对于螺杆泵定子橡胶的检测中,将主要用到固体表面分析的技术。
其技术特征:1.表面分析有很高的灵敏度;2.表面分析可以有效地从样品的大多数原子中分离出表面信号。
通过X射线表面分析技术能够得到所需的特征信息,并还能回答其他重要的问题:1).表面存在那种元素;2).这些元素处于什么化学状态;3).每种元素的每种化学态是多少;4).在三维空间上材料的空间分布是什么样的;5).若材料在表面上形成薄膜:a).薄膜的厚度是多大;b).厚度是否均匀;c).薄膜的化学组分时候均匀。
材料科学XPS 、AES、UPS、EDS四大能谱分析介绍能谱分析能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照射样品,使样品中电子受到激发而发射出来(这些自由电子带有样品表面信息),然后测量这些电子的产额(强度)对其能量的分布,从中获得有关信息的一类分析方法,广泛应用于材料表面分析技术。
主要有:俄歇电子能谱分析(AES)、X射线光电子能谱分析(XPS) 、紫外光电子能谱(UPS),能谱仪-电镜联用等方法。
仪器厂家1俄歇电子能谱法(AES)俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。
利用受激原子俄歇跃迁退激过程发射的俄歇电子对试样微区的表面成分进行的定性定量分析。
AES可以用于研究固体表面的能带结构、表面物理化学性质的变化(如表面吸附、脱附以及表面化学反应);用于材料组分的确定、纯度的检测、材料尤其是薄膜材料的生长等。
原理:俄歇电子的产生和俄歇电子跃迁过程:一定能量的电子束轰击固体样品表面,将样品内原子的内层电子击出,使原子处于高能的激发态。
外层电子跃迁到内层的电子空位,同时以两种方式释放能量:发射特征X射线;或引起另一外层电子电离,使其以特征能量射出固体样品表面,此即俄歇电子。
俄歇跃迁的方式不同,产生的俄歇电子能量不同。
上图所示俄歇跃迁所产生的俄歇电子可被标记为WXY跃迁。
如 KLL跃迁:K层电子被激发后,可产生KL1L1,KL1L2,KL2L3…等K系俄歇电子。
应用方向:1、通过俄歇电子谱研究化学组态:原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子相结合的其它(元素)原子的电负性等情况。
2、定性分析:对于特定的元素及特定的俄歇跃迁过程,其俄歇电子的能量是特征的。
由此,可根据俄歇电子的动能来定性分析样品表面物质的元素种类。
3、定量分析或半定量分析:俄歇电子强度与样品中对应原子的浓度有线性关系,据此可以进行元素的半定量分析。